organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-3-Carb­­oxy-2-(imidazol-3-ium-1-yl)­propanoate

aEastern Illinois University, Department of Chemistry, 600 Lincoln Avenue, Charleston, IL 61920-3099, USA
*Correspondence e-mail: kawheeler@eiu.edu

(Received 8 May 2009; accepted 15 May 2009; online 29 May 2009)

The title compound, C7H8N2O4, crystallizes as a zwitterion, with mol­ecules organized into mol­ecular sheets via carbox­yl–carboxyl­ate and N+—H⋯carboxyl­ate contacts. These sheets are constructed from translationally related mol­ecules that further link to neighboring motifs via π-stacking [centroid–centroid distance 3.504 (3) Å] and weak C—H⋯O contacts.

Related literature

For related compounds, see: Centnerzwer (1899[Centnerzwer, M. Z. (1899). Z. Phys. Chem. 29, 715-725.]); Pasteur (1853[Pasteur, L. (1853). Ann. Chim. Phys. 38, 437-483.]); Wheeler et al. (2008[Wheeler, K. A., Grove, R. C., Davis, R. E. & Kassel, W. S. (2008). Angew. Chem. Int. Ed. 47, 78-81.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O4

  • Mr = 184.15

  • Monoclinic, P 21 /c

  • a = 7.6328 (7) Å

  • b = 7.4701 (7) Å

  • c = 13.7616 (12) Å

  • β = 96.752 (1)°

  • V = 779.21 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.38 × 0.28 × 0.18 mm

Data collection
  • Bruker P4 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.977

  • 4668 measured reflections

  • 1540 independent reflections

  • 1254 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.06

  • 1540 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2i 0.95 (3) 1.62 (3) 2.5440 (18) 163 (3)
N2—H3⋯O1ii 0.89 (3) 1.85 (3) 2.732 (2) 170 (2)
C7—H7⋯O1iii 0.93 2.42 3.333 (2) 168
C5—H5⋯O4iv 0.93 2.57 3.260 (3) 131
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Our recent reinvestigation of Pasteur's 1853 quasiracemates (Pasteur, 1853; Wheeler et al., 2008) has motivated us to explore other examples of these unusual materials of historical and supramolecular importance. In 1899, Centnerzwer reported that mixtures of (+)-chlorosuccinic acid and (-)-bromosuccinic acid formed a binary compound that also exhibited quasiracemic behavior (Centnerzwer, 1899). Our initial attempts to grow crystals of this quasiracemic phase were unsuccessful. This result was somewhat anticipated given that Centnerzwer's melting point phase diagrams showed the crystal stabilities of the homochiral phases more stable than the quasiracemate. We then turned our attention to investigating the effects of co-crystalline additives to crystal growth of this quasiracemate and the corresponding racemic and homochiral compounds. During the course of these co-crystal screening investigations, we observed the formation of crystals of the title compound from slow evaporation of a methanol:CH2Cl2 (1:1) solution of (±)-2-chlorosuccinic acid and imidazole.

The title compound, (I), formed from the substitution reaction of imidazole and 2-chlorosuccinic acid, crystallizes in space group P21/c as the imidazolium carboxylate zwitterion (Fig. 1). Inspection of the molecular structure reveals a resonance stabilized imidazolium ring with (N1—C7) - (N2—C7) = +0.038 Å. A search of the Cambridge Structural Database (CSD, Version 5.30 with August 2008 and February 2009 updates; Allen, 2002) for other N-alkylimidazolium fragments uncovered 44 organic structures. This collection shows similar bonding patterns to (I) with a concentration of Δ(N—C) values near 0.00, +0.01, and +0.03 Å.

The crystal structure of (I) is organized by a complex blend of strong and weak intermolecular contacts (Table 1). Neighboring molecules are linked by carboxyl···carboxylate interactions to give a catemeric motif that propagates along the a-axis (Fig. 2). This motif is extended by N2+H···carboxylate contacts to produce a molecular sheet in the ab plane. The participation of the imidazolium N+—H group in hydrogen bonding is also a common feature in the 44 structures retrieved from the CSD. Each of these structures show N+—H···A contacts with a diverse set of acceptors [A = oxygen(52), nitrogen(3), halogen(15), or π(2); 72 contacts]. Interestingly, each molecular sheet in (I) consists of translationally related molecules with imidazolium groups exposed on one side of the motif and carboxyl O4 atoms on the other side. The crystal structure of (I) is characterized by the stacking of these molecular sheets with adjacent motifs related by inversion symmetry and linked by either interdigitated imadazolium···imidazolium stacks [3.504 (3) Å] or weak C5—H5···O4 interactions (Fig. 3).

Related literature top

For related structures, see: Centnerzwer (1899); Pasteur (1853); Wheeler et al. (2008). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

Single crystals of the title compound were prepared by slow evaporation at room temperature of a methanol:CH2Cl2 (1:1) solution of (±)-2-chlorosuccinic acid and imidazole (1:1).

Refinement top

H atoms (for OH and NH) were located in difference Fourier synthesis and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å, for aromatic, methine and metnylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008) and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, showing molecular sheets constructed from carboxyl···carboxylate and N—H···O contacts [symmetry codes: (i) 1 + x, y, z, (ii) x, 1 + y, z; (iii) x - 1, y, z].
[Figure 3] Fig. 3. Projection showing alignment of molecular sheets with imidazolium π stacking and C—H···O interactions [symmetry codes: i) x, y - 1, z, (ii) x, 3/2 - y, 1/2 + z; (iii) x - 3, 3/2 - y, z - 1/2].
[Figure 4] Fig. 4. The tautomeric forms of the title compound.
(±)-3-Carboxy-2-(imidazol-3-ium-1-yl)propanoate top
Crystal data top
C7H8N2O4F(000) = 384
Mr = 184.15Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1902 reflections
a = 7.6328 (7) Åθ = 6.0–54.6°
b = 7.4701 (7) ŵ = 0.13 mm1
c = 13.7616 (12) ÅT = 296 K
β = 96.752 (1)°Transparent prism, colourless
V = 779.21 (12) Å30.38 × 0.28 × 0.18 mm
Z = 4
Data collection top
Bruker P4 CCD
diffractometer
1540 independent reflections
Radiation source: fine-focus sealed tube1254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.952, Tmax = 0.977k = 98
4668 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.3288P]
where P = (Fo2 + 2Fc2)/3
1540 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H8N2O4V = 779.21 (12) Å3
Mr = 184.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6328 (7) ŵ = 0.13 mm1
b = 7.4701 (7) ÅT = 296 K
c = 13.7616 (12) Å0.38 × 0.28 × 0.18 mm
β = 96.752 (1)°
Data collection top
Bruker P4 CCD
diffractometer
1540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1254 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.977Rint = 0.021
4668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
1540 reflectionsΔρmin = 0.26 e Å3
126 parameters
Special details top

Experimental. The instrument used for data collection was a Bruker P4 with a APEXII CCD detector upgrade.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00100 (17)1.13604 (17)0.63749 (11)0.0446 (4)
O21.09600 (17)0.86066 (19)0.61600 (13)0.0558 (5)
O30.42339 (18)0.9309 (2)0.62306 (10)0.0475 (4)
O40.4539 (2)0.8529 (3)0.77836 (13)0.0813 (7)
N10.77182 (17)0.72061 (19)0.57875 (10)0.0293 (3)
N20.8241 (2)0.4386 (2)0.57164 (14)0.0448 (4)
C10.9788 (2)0.9740 (2)0.62128 (12)0.0296 (4)
C20.7853 (2)0.9081 (2)0.61136 (12)0.0290 (4)
H20.71630.98190.56190.035*
C30.7111 (2)0.9343 (3)0.70828 (13)0.0367 (4)
H3A0.77380.85510.75630.044*
H3B0.73551.05610.73010.044*
C40.5163 (2)0.9005 (3)0.70683 (14)0.0378 (4)
C50.7043 (2)0.6631 (3)0.48706 (14)0.0391 (5)
H50.64660.73300.43730.047*
C60.7375 (3)0.4871 (3)0.48305 (16)0.0474 (5)
H60.70710.41210.42980.057*
C70.8438 (2)0.5806 (2)0.62777 (15)0.0400 (5)
H70.89930.58300.69170.048*
H10.301 (5)0.920 (4)0.630 (2)0.098 (10)*
H30.870 (3)0.333 (4)0.5910 (17)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (7)0.0277 (7)0.0694 (10)0.0049 (5)0.0004 (6)0.0018 (6)
O20.0231 (7)0.0362 (8)0.1069 (13)0.0015 (6)0.0032 (7)0.0128 (8)
O30.0277 (7)0.0630 (10)0.0517 (9)0.0032 (6)0.0042 (6)0.0051 (7)
O40.0476 (10)0.1370 (19)0.0607 (11)0.0101 (11)0.0125 (8)0.0310 (11)
N10.0244 (7)0.0263 (8)0.0370 (8)0.0015 (5)0.0021 (6)0.0016 (6)
N20.0378 (9)0.0255 (9)0.0715 (12)0.0012 (7)0.0078 (8)0.0026 (8)
C10.0255 (8)0.0299 (9)0.0330 (9)0.0015 (7)0.0021 (6)0.0006 (7)
C20.0249 (8)0.0259 (9)0.0356 (9)0.0001 (6)0.0006 (6)0.0008 (7)
C30.0290 (9)0.0422 (11)0.0387 (10)0.0019 (8)0.0028 (7)0.0039 (8)
C40.0308 (9)0.0384 (10)0.0449 (11)0.0021 (7)0.0078 (8)0.0001 (8)
C50.0409 (10)0.0372 (11)0.0383 (10)0.0025 (8)0.0007 (8)0.0041 (8)
C60.0541 (13)0.0360 (11)0.0527 (13)0.0051 (9)0.0079 (10)0.0120 (9)
C70.0374 (10)0.0317 (10)0.0492 (11)0.0007 (8)0.0023 (8)0.0039 (8)
Geometric parameters (Å, º) top
O1—C11.239 (2)C1—C21.548 (2)
O2—C11.240 (2)C2—C31.522 (2)
O3—C41.300 (2)C2—H20.9800
O3—H10.95 (3)C3—C41.506 (3)
O4—C41.197 (2)C3—H3A0.9700
N1—C71.328 (2)C3—H3B0.9700
N1—C51.374 (2)C5—C61.341 (3)
N1—C21.471 (2)C5—H50.9300
N2—C71.310 (3)C6—H60.9300
N2—C61.366 (3)C7—H70.9300
N2—H30.89 (3)
C4—O3—H1110 (2)C4—C3—H3A108.3
C7—N1—C5107.96 (15)C2—C3—H3A108.3
C7—N1—C2125.82 (15)C4—C3—H3B108.3
C5—N1—C2125.65 (15)C2—C3—H3B108.3
C7—N2—C6108.73 (17)H3A—C3—H3B107.4
C7—N2—H3121.9 (16)O4—C4—O3123.55 (18)
C6—N2—H3129.2 (16)O4—C4—C3121.78 (18)
O1—C1—O2126.38 (16)O3—C4—C3114.66 (16)
O1—C1—C2115.82 (15)C6—C5—N1106.96 (18)
O2—C1—C2117.74 (15)C6—C5—H5126.5
N1—C2—C3111.71 (14)N1—C5—H5126.5
N1—C2—C1111.19 (13)C5—C6—N2107.30 (18)
C3—C2—C1109.36 (13)C5—C6—H6126.3
N1—C2—H2108.2N2—C6—H6126.3
C3—C2—H2108.2N2—C7—N1109.04 (17)
C1—C2—H2108.2N2—C7—H7125.5
C4—C3—C2115.82 (15)N1—C7—H7125.5
C7—N1—C2—C359.2 (2)C2—C3—C4—O4152.5 (2)
C5—N1—C2—C3130.59 (17)C2—C3—C4—O328.9 (2)
C7—N1—C2—C163.3 (2)C7—N1—C5—C60.1 (2)
C5—N1—C2—C1106.93 (18)C2—N1—C5—C6171.80 (16)
O1—C1—C2—N1172.03 (15)N1—C5—C6—N20.1 (2)
O2—C1—C2—N110.5 (2)C7—N2—C6—C50.3 (2)
O1—C1—C2—C364.1 (2)C6—N2—C7—N10.3 (2)
O2—C1—C2—C3113.28 (18)C5—N1—C7—N20.3 (2)
N1—C2—C3—C464.66 (19)C2—N1—C7—N2171.95 (16)
C1—C2—C3—C4171.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.95 (3)1.62 (3)2.5440 (18)163 (3)
N2—H3···O1ii0.89 (3)1.85 (3)2.732 (2)170 (2)
C7—H7···O1iii0.932.423.333 (2)168
C5—H5···O4iv0.932.573.260 (3)131
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y1/2, z+3/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H8N2O4
Mr184.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.6328 (7), 7.4701 (7), 13.7616 (12)
β (°) 96.752 (1)
V3)779.21 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.38 × 0.28 × 0.18
Data collection
DiffractometerBruker P4 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.952, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
4668, 1540, 1254
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.06
No. of reflections1540
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008) and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.95 (3)1.62 (3)2.5440 (18)163 (3)
N2—H3···O1ii0.89 (3)1.85 (3)2.732 (2)170 (2)
C7—H7···O1iii0.932.423.333 (2)168.2
C5—H5···O4iv0.932.573.260 (3)131.4
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y1/2, z+3/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund Type B, the National Science Foundation (grant No. 0722547) and Eastern Illinois University for support of this crystallographic investigation.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentnerzwer, M. Z. (1899). Z. Phys. Chem. 29, 715–725.  CAS Google Scholar
First citationPasteur, L. (1853). Ann. Chim. Phys. 38, 437–483.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheeler, K. A., Grove, R. C., Davis, R. E. & Kassel, W. S. (2008). Angew. Chem. Int. Ed. 47, 78–81.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds