organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl­methanaminium chloro­acetate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 May 2009; accepted 12 May 2009; online 20 May 2009)

In the title compound, C7H10N+·C2H2ClO2, the planar chloracetate ion [with a maximum deviation of 0.025 (3) Å] is oriented at a dihedral angle of 31.07 (4)° with respect to the planar [maximum deviation of 0.022 (3) Å] phenyl­methanaminium cation. In the crystal structure, inter­mol­ecular N—H⋯O hydrogen bonds link the mol­ecules into a network. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Amini et al. (2007[Amini, M. M., Nasiri, S. & Ng, S. W. (2007). Acta Cryst. E63, o1361-o1362.]); Houllemare-Druot & Coquerel (1998[Houllemare-Druot, S. & Coquerel, G. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2220.]); Rademeyer (2003[Rademeyer, M. (2003). Acta Cryst. E59, o1860-o1861.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·C2H2ClO2

  • Mr = 201.65

  • Orthorhombic, P b c a

  • a = 11.1653 (9) Å

  • b = 8.0295 (5) Å

  • c = 22.3714 (18) Å

  • V = 2005.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.28 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.958

  • 11668 measured reflections

  • 2485 independent reflections

  • 1592 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.03

  • 2485 reflections

  • 128 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.894 (16) 1.919 (17) 2.779 (2) 160.9 (16)
N1—H1B⋯O1ii 0.869 (19) 2.026 (19) 2.798 (2) 147.5 (17)
N1—H1C⋯O2iii 0.94 (2) 1.80 (2) 2.740 (2) 175.5 (16)
C5—H5⋯Cg1iv 0.93 2.93 3.777 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Organic ammonium salts have many applications such as phase transfer catalysis, photo base-generators etc. We have prepared a scheme for synthesizing various ammonium salts, which will differ due to the moiety attached to NH3 group and due to the anion. We reported herein the crystal structure of the title compound, (I), in this regard. The crystal structures of benzylammonium nitrate, (II) (Rademeyer, 2003), bis(benzylammonium) sulfate, (III) (Amini et al., 2007) and (±)-α-methylbenzylammonium chloroacetate, (IV) (Houllemare-Druot & Coquerel, 1998) have been reported.

The asymmetric unit of the title compound contains one cation and one anion (Fig. 1 ), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. The planar chloracetate ion [with a maximum deviation of 0.025 (3) Å for atom C8] is oriented with respect to the planar phenylmethane moiety [with a maximum deviation of -0.022 (3) Å for atom C7] at a dihedral angle of 31.07 (4)°, and atom N1 is 1.3132 (24) Å away from the plane of the phenylmethane moiety.

In the crystal structure, strong intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For related structures, see: Amini et al. (2007); Houllemare-Druot & Coquerel (1998); Rademeyer (2003). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the benzene ring.

Experimental top

For the preparation of the title compound, benzylamine (1.09 ml, 0.01 mol) was added dropwise to a solution of chloroacetic acid (0.945 g, 0.01 mol) in dichloromethane (20 ml), and stirred for 30 min. The product precipitated, filtered out and washed with n-hexane. Crystals suitable for X-ray analysis were obtained from a mixture of n-hexane/chloroform (1:1).

Refinement top

H atoms (for NH3) were located in difference Fourier synthesis and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å, for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenylmethanaminium chloroacetate top
Crystal data top
C7H10N+·C2H2ClO2F(000) = 848
Mr = 201.65Dx = 1.336 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2485 reflections
a = 11.1653 (9) Åθ = 2.6–28.3°
b = 8.0295 (5) ŵ = 0.35 mm1
c = 22.3714 (18) ÅT = 296 K
V = 2005.6 (3) Å3Needle, colorless
Z = 80.28 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2485 independent reflections
Radiation source: fine-focus sealed tube1592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 1214
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 710
Tmin = 0.941, Tmax = 0.958l = 2929
11668 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2834P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2485 reflectionsΔρmax = 0.21 e Å3
128 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (11)
Crystal data top
C7H10N+·C2H2ClO2V = 2005.6 (3) Å3
Mr = 201.65Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.1653 (9) ŵ = 0.35 mm1
b = 8.0295 (5) ÅT = 296 K
c = 22.3714 (18) Å0.28 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1592 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.958Rint = 0.040
11668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
2485 reflectionsΔρmin = 0.20 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22460 (4)0.33171 (7)0.07550 (3)0.0665 (2)
O10.01235 (10)0.22583 (15)0.03185 (6)0.0435 (4)
O20.11363 (11)0.44211 (18)0.06754 (7)0.0586 (5)
N10.64467 (14)0.4356 (2)0.04653 (7)0.0368 (5)
C10.59953 (15)0.4607 (2)0.15510 (8)0.0376 (5)
C20.69962 (18)0.4421 (3)0.19030 (10)0.0519 (7)
C30.7096 (2)0.5291 (3)0.24323 (11)0.0684 (9)
C40.6222 (3)0.6365 (3)0.26080 (10)0.0693 (9)
C50.5239 (2)0.6594 (3)0.22598 (11)0.0634 (8)
C60.51145 (17)0.5705 (2)0.17352 (9)0.0492 (6)
C70.58321 (18)0.3615 (2)0.09867 (9)0.0495 (7)
C80.08928 (14)0.4447 (2)0.08390 (9)0.0436 (6)
C90.02110 (14)0.3609 (2)0.05846 (7)0.0333 (5)
H1A0.6185 (16)0.540 (2)0.0418 (8)0.0442*
H1B0.6233 (17)0.376 (2)0.0159 (9)0.0442*
H1C0.7280 (18)0.436 (2)0.0517 (8)0.0442*
H20.760680.370600.178400.0623*
H30.776870.514200.267160.0821*
H40.629790.694150.296640.0832*
H50.465100.734870.237470.0761*
H60.443080.584550.150310.0590*
H7A0.498320.352740.089990.0593*
H7B0.613680.249740.105020.0593*
H8A0.076160.464640.126160.0523*
H8B0.098650.552210.064710.0523*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0303 (3)0.0642 (4)0.1049 (5)0.0065 (2)0.0105 (3)0.0122 (3)
O10.0383 (7)0.0417 (7)0.0504 (7)0.0084 (5)0.0054 (5)0.0141 (6)
O20.0301 (7)0.0623 (10)0.0834 (11)0.0074 (6)0.0015 (6)0.0179 (8)
N10.0312 (7)0.0368 (9)0.0424 (9)0.0039 (7)0.0020 (7)0.0106 (7)
C10.0378 (9)0.0337 (9)0.0412 (10)0.0065 (8)0.0030 (8)0.0045 (8)
C20.0450 (11)0.0533 (13)0.0573 (13)0.0005 (9)0.0035 (9)0.0111 (10)
C30.0693 (15)0.0801 (17)0.0558 (14)0.0243 (14)0.0217 (12)0.0170 (13)
C40.105 (2)0.0624 (16)0.0404 (12)0.0273 (15)0.0086 (13)0.0014 (10)
C50.0784 (16)0.0544 (14)0.0575 (13)0.0027 (12)0.0264 (13)0.0040 (11)
C60.0416 (10)0.0540 (12)0.0519 (11)0.0062 (9)0.0067 (9)0.0063 (9)
C70.0511 (11)0.0411 (11)0.0562 (12)0.0094 (9)0.0043 (10)0.0049 (9)
C80.0320 (8)0.0410 (11)0.0577 (11)0.0024 (8)0.0047 (8)0.0138 (9)
C90.0293 (8)0.0355 (10)0.0350 (9)0.0021 (7)0.0009 (7)0.0020 (8)
Geometric parameters (Å, º) top
Cl1—C81.7723 (17)C4—C51.358 (4)
O1—C91.241 (2)C5—C61.381 (3)
O2—C91.239 (2)C2—H20.9300
N1—C71.478 (3)C3—H30.9300
N1—H1A0.894 (16)C4—H40.9300
N1—H1B0.869 (19)C5—H50.9300
N1—H1C0.94 (2)C6—H60.9300
C1—C61.384 (2)C7—H7A0.9700
C1—C21.375 (3)C7—H7B0.9700
C1—C71.504 (3)C8—C91.515 (2)
C2—C31.379 (3)C8—H8A0.9700
C3—C41.360 (4)C8—H8B0.9700
Cl1···O12.9455 (13)C5···H3xii3.0000
Cl1···H7A3.0800C6···H3xii2.9700
Cl1···H1Bi2.871 (19)C9···H1Ciii2.87 (2)
Cl1···H8Bii3.0000C9···H1Bi2.998 (18)
O1···Cl12.9455 (13)C9···H1Aii2.822 (16)
O1···N1i2.798 (2)C9···H8Bix2.9700
O1···C7i3.187 (2)H1A···O1iv1.919 (17)
O1···C7ii3.379 (2)H1A···C9iv2.822 (16)
O1···N1ii2.779 (2)H1B···Cl1vi2.871 (19)
O1···C6ii3.406 (2)H1B···O1vi2.026 (19)
O2···N1iii2.740 (2)H1B···C9vi2.998 (18)
O1···H7Ai2.8000H1C···O2v1.80 (2)
O1···H1Aii1.919 (17)H1C···C9v2.87 (2)
O1···H1Bi2.026 (19)H2···H7B2.5200
O2···H1Ciii1.80 (2)H2···O2v2.9100
O2···H2iii2.9100H2···C4vii2.9400
O2···H7Biv2.6100H3···C6xi2.9700
N1···O1iv2.779 (2)H3···C5xi3.0000
N1···O2v2.740 (2)H4···H8Axi2.6000
N1···O1vi2.798 (2)H5···C2xiii2.9600
C2···C4vii3.531 (4)H5···C3xiii3.0900
C4···C2viii3.531 (4)H5···C1xiii3.1000
C6···O1iv3.406 (2)H6···H7A2.3800
C6···C9iv3.475 (2)H7A···Cl13.0800
C7···O1iv3.379 (2)H7A···H62.3800
C7···O1vi3.187 (2)H7A···O1vi2.8000
C9···C9ix3.472 (2)H7B···H22.5200
C9···C6ii3.475 (2)H7B···O2ii2.6100
C1···H5x3.1000H8A···C4xii2.9300
C2···H5x2.9600H8A···H4xii2.6000
C3···H5x3.0900H8B···C9ix2.9700
C4···H2viii2.9400H8B···Cl1iv3.0000
C4···H8Axi2.9300
H1B—N1—H1C111.8 (16)C5—C4—H4120.00
C7—N1—H1C111.4 (11)C4—C5—H5120.00
C7—N1—H1A108.6 (12)C6—C5—H5120.00
C7—N1—H1B105.8 (12)C1—C6—H6120.00
H1A—N1—H1B109.5 (16)C5—C6—H6120.00
H1A—N1—H1C109.6 (15)N1—C7—H7A109.00
C2—C1—C7121.44 (17)N1—C7—H7B109.00
C2—C1—C6118.44 (18)C1—C7—H7A109.00
C6—C1—C7120.10 (16)C1—C7—H7B109.00
C1—C2—C3120.2 (2)H7A—C7—H7B108.00
C2—C3—C4120.7 (2)Cl1—C8—C9115.23 (12)
C3—C4—C5120.0 (2)O1—C9—O2127.19 (15)
C4—C5—C6119.9 (2)O1—C9—C8120.28 (14)
C1—C6—C5120.74 (18)O2—C9—C8112.53 (14)
N1—C7—C1113.14 (14)Cl1—C8—H8A108.00
C1—C2—H2120.00Cl1—C8—H8B108.00
C3—C2—H2120.00C9—C8—H8A108.00
C2—C3—H3120.00C9—C8—H8B108.00
C4—C3—H3120.00H8A—C8—H8B108.00
C3—C4—H4120.00
C6—C1—C2—C31.3 (3)C1—C2—C3—C41.3 (4)
C7—C1—C2—C3177.00 (19)C2—C3—C4—C50.2 (4)
C2—C1—C6—C50.1 (3)C3—C4—C5—C61.6 (4)
C7—C1—C6—C5178.42 (18)C4—C5—C6—C11.6 (3)
C2—C1—C7—N183.7 (2)Cl1—C8—C9—O12.8 (2)
C6—C1—C7—N198.1 (2)Cl1—C8—C9—O2177.43 (13)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, y+1/2, z; (vii) x+3/2, y1/2, z; (viii) x+3/2, y+1/2, z; (ix) x, y+1, z; (x) x+1, y1/2, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x1/2, y, z+1/2; (xiii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iv0.894 (16)1.919 (17)2.779 (2)160.9 (16)
N1—H1B···O1vi0.869 (19)2.026 (19)2.798 (2)147.5 (17)
N1—H1C···O2v0.94 (2)1.80 (2)2.740 (2)175.5 (16)
C5—H5···Cg1xiii0.932.933.777152.00
Symmetry codes: (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, y+1/2, z; (xiii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10N+·C2H2ClO2
Mr201.65
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.1653 (9), 8.0295 (5), 22.3714 (18)
V3)2005.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.28 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.941, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11668, 2485, 1592
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.03
No. of reflections2485
No. of parameters128
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.894 (16)1.919 (17)2.779 (2)160.9 (16)
N1—H1B···O1ii0.869 (19)2.026 (19)2.798 (2)147.5 (17)
N1—H1C···O2iii0.94 (2)1.80 (2)2.740 (2)175.5 (16)
C5—H5···Cg1iv0.932.933.777152.00
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmini, M. M., Nasiri, S. & Ng, S. W. (2007). Acta Cryst. E63, o1361–o1362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoullemare-Druot, S. & Coquerel, G. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2220.  Google Scholar
First citationRademeyer, M. (2003). Acta Cryst. E59, o1860–o1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds