organic compounds
Phenylmethanaminium chloroacetate
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C7H10N+·C2H2ClO2−, the planar chloracetate ion [with a maximum deviation of 0.025 (3) Å] is oriented at a dihedral angle of 31.07 (4)° with respect to the planar [maximum deviation of 0.022 (3) Å] phenylmethanaminium cation. In the intermolecular N—H⋯O hydrogen bonds link the molecules into a network. A weak C—H⋯π interaction is also present.
Related literature
For related structures, see: Amini et al. (2007); Houllemare-Druot & Coquerel (1998); Rademeyer (2003). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809017802/hk2686sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017802/hk2686Isup2.hkl
For the preparation of the title compound, benzylamine (1.09 ml, 0.01 mol) was added dropwise to a solution of chloroacetic acid (0.945 g, 0.01 mol) in dichloromethane (20 ml), and stirred for 30 min. The product precipitated, filtered out and washed with n-hexane. Crystals suitable for X-ray analysis were obtained from a mixture of n-hexane/chloroform (1:1).
H atoms (for NH3) were located in difference Fourier synthesis and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å, for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. |
C7H10N+·C2H2ClO2− | F(000) = 848 |
Mr = 201.65 | Dx = 1.336 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2485 reflections |
a = 11.1653 (9) Å | θ = 2.6–28.3° |
b = 8.0295 (5) Å | µ = 0.35 mm−1 |
c = 22.3714 (18) Å | T = 296 K |
V = 2005.6 (3) Å3 | Needle, colorless |
Z = 8 | 0.28 × 0.14 × 0.12 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 2485 independent reflections |
Radiation source: fine-focus sealed tube | 1592 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
ω scans | h = −12→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −7→10 |
Tmin = 0.941, Tmax = 0.958 | l = −29→29 |
11668 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2834P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2485 reflections | Δρmax = 0.21 e Å−3 |
128 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0052 (11) |
C7H10N+·C2H2ClO2− | V = 2005.6 (3) Å3 |
Mr = 201.65 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.1653 (9) Å | µ = 0.35 mm−1 |
b = 8.0295 (5) Å | T = 296 K |
c = 22.3714 (18) Å | 0.28 × 0.14 × 0.12 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 2485 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1592 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 0.958 | Rint = 0.040 |
11668 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.21 e Å−3 |
2485 reflections | Δρmin = −0.20 e Å−3 |
128 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.22460 (4) | 0.33171 (7) | 0.07550 (3) | 0.0665 (2) | |
O1 | −0.01235 (10) | 0.22583 (15) | 0.03185 (6) | 0.0435 (4) | |
O2 | −0.11363 (11) | 0.44211 (18) | 0.06754 (7) | 0.0586 (5) | |
N1 | 0.64467 (14) | 0.4356 (2) | 0.04653 (7) | 0.0368 (5) | |
C1 | 0.59953 (15) | 0.4607 (2) | 0.15510 (8) | 0.0376 (5) | |
C2 | 0.69962 (18) | 0.4421 (3) | 0.19030 (10) | 0.0519 (7) | |
C3 | 0.7096 (2) | 0.5291 (3) | 0.24323 (11) | 0.0684 (9) | |
C4 | 0.6222 (3) | 0.6365 (3) | 0.26080 (10) | 0.0693 (9) | |
C5 | 0.5239 (2) | 0.6594 (3) | 0.22598 (11) | 0.0634 (8) | |
C6 | 0.51145 (17) | 0.5705 (2) | 0.17352 (9) | 0.0492 (6) | |
C7 | 0.58321 (18) | 0.3615 (2) | 0.09867 (9) | 0.0495 (7) | |
C8 | 0.08928 (14) | 0.4447 (2) | 0.08390 (9) | 0.0436 (6) | |
C9 | −0.02110 (14) | 0.3609 (2) | 0.05846 (7) | 0.0333 (5) | |
H1A | 0.6185 (16) | 0.540 (2) | 0.0418 (8) | 0.0442* | |
H1B | 0.6233 (17) | 0.376 (2) | 0.0159 (9) | 0.0442* | |
H1C | 0.7280 (18) | 0.436 (2) | 0.0517 (8) | 0.0442* | |
H2 | 0.76068 | 0.37060 | 0.17840 | 0.0623* | |
H3 | 0.77687 | 0.51420 | 0.26716 | 0.0821* | |
H4 | 0.62979 | 0.69415 | 0.29664 | 0.0832* | |
H5 | 0.46510 | 0.73487 | 0.23747 | 0.0761* | |
H6 | 0.44308 | 0.58455 | 0.15031 | 0.0590* | |
H7A | 0.49832 | 0.35274 | 0.08999 | 0.0593* | |
H7B | 0.61368 | 0.24974 | 0.10502 | 0.0593* | |
H8A | 0.07616 | 0.46464 | 0.12616 | 0.0523* | |
H8B | 0.09865 | 0.55221 | 0.06471 | 0.0523* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0303 (3) | 0.0642 (4) | 0.1049 (5) | 0.0065 (2) | −0.0105 (3) | −0.0122 (3) |
O1 | 0.0383 (7) | 0.0417 (7) | 0.0504 (7) | −0.0084 (5) | 0.0054 (5) | −0.0141 (6) |
O2 | 0.0301 (7) | 0.0623 (10) | 0.0834 (11) | 0.0074 (6) | −0.0015 (6) | −0.0179 (8) |
N1 | 0.0312 (7) | 0.0368 (9) | 0.0424 (9) | 0.0039 (7) | −0.0020 (7) | −0.0106 (7) |
C1 | 0.0378 (9) | 0.0337 (9) | 0.0412 (10) | −0.0065 (8) | 0.0030 (8) | 0.0045 (8) |
C2 | 0.0450 (11) | 0.0533 (13) | 0.0573 (13) | 0.0005 (9) | −0.0035 (9) | 0.0111 (10) |
C3 | 0.0693 (15) | 0.0801 (17) | 0.0558 (14) | −0.0243 (14) | −0.0217 (12) | 0.0170 (13) |
C4 | 0.105 (2) | 0.0624 (16) | 0.0404 (12) | −0.0273 (15) | 0.0086 (13) | −0.0014 (10) |
C5 | 0.0784 (16) | 0.0544 (14) | 0.0575 (13) | 0.0027 (12) | 0.0264 (13) | −0.0040 (11) |
C6 | 0.0416 (10) | 0.0540 (12) | 0.0519 (11) | 0.0062 (9) | 0.0067 (9) | 0.0063 (9) |
C7 | 0.0511 (11) | 0.0411 (11) | 0.0562 (12) | −0.0094 (9) | 0.0043 (10) | −0.0049 (9) |
C8 | 0.0320 (8) | 0.0410 (11) | 0.0577 (11) | 0.0024 (8) | −0.0047 (8) | −0.0138 (9) |
C9 | 0.0293 (8) | 0.0355 (10) | 0.0350 (9) | −0.0021 (7) | 0.0009 (7) | −0.0020 (8) |
Cl1—C8 | 1.7723 (17) | C4—C5 | 1.358 (4) |
O1—C9 | 1.241 (2) | C5—C6 | 1.381 (3) |
O2—C9 | 1.239 (2) | C2—H2 | 0.9300 |
N1—C7 | 1.478 (3) | C3—H3 | 0.9300 |
N1—H1A | 0.894 (16) | C4—H4 | 0.9300 |
N1—H1B | 0.869 (19) | C5—H5 | 0.9300 |
N1—H1C | 0.94 (2) | C6—H6 | 0.9300 |
C1—C6 | 1.384 (2) | C7—H7A | 0.9700 |
C1—C2 | 1.375 (3) | C7—H7B | 0.9700 |
C1—C7 | 1.504 (3) | C8—C9 | 1.515 (2) |
C2—C3 | 1.379 (3) | C8—H8A | 0.9700 |
C3—C4 | 1.360 (4) | C8—H8B | 0.9700 |
Cl1···O1 | 2.9455 (13) | C5···H3xii | 3.0000 |
Cl1···H7A | 3.0800 | C6···H3xii | 2.9700 |
Cl1···H1Bi | 2.871 (19) | C9···H1Ciii | 2.87 (2) |
Cl1···H8Bii | 3.0000 | C9···H1Bi | 2.998 (18) |
O1···Cl1 | 2.9455 (13) | C9···H1Aii | 2.822 (16) |
O1···N1i | 2.798 (2) | C9···H8Bix | 2.9700 |
O1···C7i | 3.187 (2) | H1A···O1iv | 1.919 (17) |
O1···C7ii | 3.379 (2) | H1A···C9iv | 2.822 (16) |
O1···N1ii | 2.779 (2) | H1B···Cl1vi | 2.871 (19) |
O1···C6ii | 3.406 (2) | H1B···O1vi | 2.026 (19) |
O2···N1iii | 2.740 (2) | H1B···C9vi | 2.998 (18) |
O1···H7Ai | 2.8000 | H1C···O2v | 1.80 (2) |
O1···H1Aii | 1.919 (17) | H1C···C9v | 2.87 (2) |
O1···H1Bi | 2.026 (19) | H2···H7B | 2.5200 |
O2···H1Ciii | 1.80 (2) | H2···O2v | 2.9100 |
O2···H2iii | 2.9100 | H2···C4vii | 2.9400 |
O2···H7Biv | 2.6100 | H3···C6xi | 2.9700 |
N1···O1iv | 2.779 (2) | H3···C5xi | 3.0000 |
N1···O2v | 2.740 (2) | H4···H8Axi | 2.6000 |
N1···O1vi | 2.798 (2) | H5···C2xiii | 2.9600 |
C2···C4vii | 3.531 (4) | H5···C3xiii | 3.0900 |
C4···C2viii | 3.531 (4) | H5···C1xiii | 3.1000 |
C6···O1iv | 3.406 (2) | H6···H7A | 2.3800 |
C6···C9iv | 3.475 (2) | H7A···Cl1 | 3.0800 |
C7···O1iv | 3.379 (2) | H7A···H6 | 2.3800 |
C7···O1vi | 3.187 (2) | H7A···O1vi | 2.8000 |
C9···C9ix | 3.472 (2) | H7B···H2 | 2.5200 |
C9···C6ii | 3.475 (2) | H7B···O2ii | 2.6100 |
C1···H5x | 3.1000 | H8A···C4xii | 2.9300 |
C2···H5x | 2.9600 | H8A···H4xii | 2.6000 |
C3···H5x | 3.0900 | H8B···C9ix | 2.9700 |
C4···H2viii | 2.9400 | H8B···Cl1iv | 3.0000 |
C4···H8Axi | 2.9300 | ||
H1B—N1—H1C | 111.8 (16) | C5—C4—H4 | 120.00 |
C7—N1—H1C | 111.4 (11) | C4—C5—H5 | 120.00 |
C7—N1—H1A | 108.6 (12) | C6—C5—H5 | 120.00 |
C7—N1—H1B | 105.8 (12) | C1—C6—H6 | 120.00 |
H1A—N1—H1B | 109.5 (16) | C5—C6—H6 | 120.00 |
H1A—N1—H1C | 109.6 (15) | N1—C7—H7A | 109.00 |
C2—C1—C7 | 121.44 (17) | N1—C7—H7B | 109.00 |
C2—C1—C6 | 118.44 (18) | C1—C7—H7A | 109.00 |
C6—C1—C7 | 120.10 (16) | C1—C7—H7B | 109.00 |
C1—C2—C3 | 120.2 (2) | H7A—C7—H7B | 108.00 |
C2—C3—C4 | 120.7 (2) | Cl1—C8—C9 | 115.23 (12) |
C3—C4—C5 | 120.0 (2) | O1—C9—O2 | 127.19 (15) |
C4—C5—C6 | 119.9 (2) | O1—C9—C8 | 120.28 (14) |
C1—C6—C5 | 120.74 (18) | O2—C9—C8 | 112.53 (14) |
N1—C7—C1 | 113.14 (14) | Cl1—C8—H8A | 108.00 |
C1—C2—H2 | 120.00 | Cl1—C8—H8B | 108.00 |
C3—C2—H2 | 120.00 | C9—C8—H8A | 108.00 |
C2—C3—H3 | 120.00 | C9—C8—H8B | 108.00 |
C4—C3—H3 | 120.00 | H8A—C8—H8B | 108.00 |
C3—C4—H4 | 120.00 | ||
C6—C1—C2—C3 | 1.3 (3) | C1—C2—C3—C4 | −1.3 (4) |
C7—C1—C2—C3 | −177.00 (19) | C2—C3—C4—C5 | −0.2 (4) |
C2—C1—C6—C5 | 0.1 (3) | C3—C4—C5—C6 | 1.6 (4) |
C7—C1—C6—C5 | 178.42 (18) | C4—C5—C6—C1 | −1.6 (3) |
C2—C1—C7—N1 | −83.7 (2) | Cl1—C8—C9—O1 | −2.8 (2) |
C6—C1—C7—N1 | 98.1 (2) | Cl1—C8—C9—O2 | 177.43 (13) |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) −x+1/2, y−1/2, z; (iii) x−1, y, z; (iv) −x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z; (vii) −x+3/2, y−1/2, z; (viii) −x+3/2, y+1/2, z; (ix) −x, −y+1, −z; (x) −x+1, y−1/2, −z+1/2; (xi) x+1/2, y, −z+1/2; (xii) x−1/2, y, −z+1/2; (xiii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1iv | 0.894 (16) | 1.919 (17) | 2.779 (2) | 160.9 (16) |
N1—H1B···O1vi | 0.869 (19) | 2.026 (19) | 2.798 (2) | 147.5 (17) |
N1—H1C···O2v | 0.94 (2) | 1.80 (2) | 2.740 (2) | 175.5 (16) |
C5—H5···Cg1xiii | 0.93 | 2.93 | 3.777 | 152.00 |
Symmetry codes: (iv) −x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, −y+1/2, −z; (xiii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H10N+·C2H2ClO2− |
Mr | 201.65 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 11.1653 (9), 8.0295 (5), 22.3714 (18) |
V (Å3) | 2005.6 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.28 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.941, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11668, 2485, 1592 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.121, 1.03 |
No. of reflections | 2485 |
No. of parameters | 128 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.20 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.894 (16) | 1.919 (17) | 2.779 (2) | 160.9 (16) |
N1—H1B···O1ii | 0.869 (19) | 2.026 (19) | 2.798 (2) | 147.5 (17) |
N1—H1C···O2iii | 0.94 (2) | 1.80 (2) | 2.740 (2) | 175.5 (16) |
C5—H5···Cg1iv | 0.93 | 2.93 | 3.777 | 152.00 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, −y+1/2, −z; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Amini, M. M., Nasiri, S. & Ng, S. W. (2007). Acta Cryst. E63, o1361–o1362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Houllemare-Druot, S. & Coquerel, G. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2220. Google Scholar
Rademeyer, M. (2003). Acta Cryst. E59, o1860–o1861. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic ammonium salts have many applications such as phase transfer catalysis, photo base-generators etc. We have prepared a scheme for synthesizing various ammonium salts, which will differ due to the moiety attached to NH3 group and due to the anion. We reported herein the crystal structure of the title compound, (I), in this regard. The crystal structures of benzylammonium nitrate, (II) (Rademeyer, 2003), bis(benzylammonium) sulfate, (III) (Amini et al., 2007) and (±)-α-methylbenzylammonium chloroacetate, (IV) (Houllemare-Druot & Coquerel, 1998) have been reported.
The asymmetric unit of the title compound contains one cation and one anion (Fig. 1 ), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. The planar chloracetate ion [with a maximum deviation of 0.025 (3) Å for atom C8] is oriented with respect to the planar phenylmethane moiety [with a maximum deviation of -0.022 (3) Å for atom C7] at a dihedral angle of 31.07 (4)°, and atom N1 is 1.3132 (24) Å away from the plane of the phenylmethane moiety.
In the crystal structure, strong intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).