organic compounds
2-Methyl-4-nitrophenol
aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn
The molecule of the title compound, C7H7NO3, is nearly planar [maximum deviation 0.112 (3) Å for one of the notro O atoms]. In the intermolecular O—H⋯O and C—H⋯O interactions link the molecules into a three-dimensional network.
Related literature
For a related structure, see: Ahmed & Ashwini (2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018716/hk2688sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018716/hk2688Isup2.hkl
For the preparation of the title compound, ethyl acetate (150 ml), 2-methyl-phenol (5.9 g) and zinc chloride (7.4 g) are placed in an ultrasonic cleaning bath equipped with a round botton flask, and then nitric acid (5.9 g) was added dropwise in 3 min. After the reaction was completed, water (200 ml) was added. After evaporation of the organic layer, the obtained product (Ahmed & Ashwini, 2004) was crystallized by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H7NO3 | F(000) = 320 |
Mr = 153.14 | Dx = 1.473 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 5.6210 (11) Å | θ = 9–13° |
b = 8.7420 (17) Å | µ = 0.12 mm−1 |
c = 14.300 (3) Å | T = 294 K |
β = 100.71 (3)° | Block, colorless |
V = 690.4 (2) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 870 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
Graphite monochromator | θmax = 25.3°, θmin = 2.7° |
ω/2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→10 |
Tmin = 0.966, Tmax = 0.988 | l = −17→16 |
1378 measured reflections | 3 standard reflections every 120 min |
1245 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.181 | w = 1/[σ2(Fo2) + (0.08P)2 + 0.74P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1245 reflections | Δρmax = 0.25 e Å−3 |
102 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.017 (4) |
C7H7NO3 | V = 690.4 (2) Å3 |
Mr = 153.14 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6210 (11) Å | µ = 0.12 mm−1 |
b = 8.7420 (17) Å | T = 294 K |
c = 14.300 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 100.71 (3)° |
Enraf–Nonius CAD-4 diffractometer | 870 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.027 |
Tmin = 0.966, Tmax = 0.988 | 3 standard reflections every 120 min |
1378 measured reflections | intensity decay: 1% |
1245 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.25 e Å−3 |
1245 reflections | Δρmin = −0.24 e Å−3 |
102 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.3440 (5) | 0.6807 (3) | 0.9304 (2) | 0.0769 (9) | |
O2 | −0.0576 (5) | 0.7542 (3) | 0.8605 (2) | 0.0682 (8) | |
O3 | 0.0480 (4) | 0.0536 (3) | 0.81980 (17) | 0.0567 (7) | |
H3A | −0.0372 | −0.0079 | 0.8417 | 0.085* | |
N | −0.1770 (5) | 0.6536 (3) | 0.8896 (2) | 0.0490 (8) | |
C1 | 0.0652 (6) | 0.4640 (4) | 0.8248 (2) | 0.0478 (9) | |
H1A | 0.1525 | 0.5429 | 0.8034 | 0.057* | |
C2 | 0.1146 (6) | 0.3143 (4) | 0.8076 (2) | 0.0487 (9) | |
H2A | 0.2352 | 0.2908 | 0.7734 | 0.058* | |
C3 | −0.0137 (6) | 0.1979 (4) | 0.8410 (2) | 0.0417 (8) | |
C4 | −0.1941 (5) | 0.2284 (3) | 0.8932 (2) | 0.0410 (8) | |
C5 | −0.2457 (6) | 0.3796 (4) | 0.9085 (2) | 0.0415 (8) | |
H5A | −0.3678 | 0.4038 | 0.9418 | 0.050* | |
C6 | −0.1175 (5) | 0.4950 (4) | 0.8747 (2) | 0.0413 (8) | |
C7 | −0.3278 (6) | 0.1019 (4) | 0.9313 (3) | 0.0531 (9) | |
H7A | −0.2143 | 0.0360 | 0.9707 | 0.080* | |
H7B | −0.4172 | 0.0441 | 0.8793 | 0.080* | |
H7C | −0.4375 | 0.1443 | 0.9684 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.093 (2) | 0.0485 (16) | 0.104 (2) | 0.0137 (14) | 0.0576 (18) | −0.0051 (15) |
O2 | 0.0861 (19) | 0.0303 (13) | 0.097 (2) | −0.0030 (12) | 0.0392 (16) | 0.0063 (13) |
O3 | 0.0661 (15) | 0.0341 (13) | 0.0802 (17) | 0.0000 (11) | 0.0405 (13) | −0.0053 (11) |
N | 0.0594 (18) | 0.0337 (15) | 0.0567 (17) | 0.0039 (13) | 0.0180 (14) | 0.0005 (13) |
C1 | 0.0539 (19) | 0.0371 (17) | 0.059 (2) | −0.0036 (14) | 0.0281 (17) | 0.0044 (15) |
C2 | 0.0496 (19) | 0.0413 (18) | 0.063 (2) | −0.0036 (15) | 0.0302 (17) | −0.0024 (16) |
C3 | 0.0438 (17) | 0.0339 (15) | 0.0503 (18) | −0.0019 (14) | 0.0168 (14) | −0.0029 (14) |
C4 | 0.0389 (16) | 0.0397 (17) | 0.0473 (18) | −0.0032 (13) | 0.0156 (14) | −0.0012 (14) |
C5 | 0.0403 (16) | 0.0407 (17) | 0.0469 (17) | 0.0021 (14) | 0.0171 (14) | 0.0005 (14) |
C6 | 0.0461 (17) | 0.0312 (16) | 0.0500 (18) | 0.0009 (13) | 0.0177 (14) | −0.0006 (13) |
C7 | 0.054 (2) | 0.045 (2) | 0.068 (2) | −0.0034 (15) | 0.0285 (17) | 0.0007 (16) |
O3—C3 | 1.357 (4) | C2—H2A | 0.9300 |
O3—H3A | 0.8200 | C3—C4 | 1.393 (4) |
N—O1 | 1.217 (3) | C4—C5 | 1.379 (4) |
N—O2 | 1.225 (4) | C4—C7 | 1.496 (4) |
N—C6 | 1.451 (4) | C5—C6 | 1.379 (4) |
C1—C2 | 1.370 (5) | C5—H5A | 0.9300 |
C1—C6 | 1.382 (4) | C7—H7A | 0.9600 |
C1—H1A | 0.9300 | C7—H7B | 0.9600 |
C2—C3 | 1.382 (4) | C7—H7C | 0.9600 |
C3—O3—H3A | 109.5 | C5—C4—C7 | 121.1 (3) |
O1—N—O2 | 122.9 (3) | C3—C4—C7 | 121.2 (3) |
O1—N—C6 | 118.4 (3) | C6—C5—C4 | 120.5 (3) |
O2—N—C6 | 118.7 (3) | C6—C5—H5A | 119.8 |
C2—C1—C6 | 118.4 (3) | C4—C5—H5A | 119.8 |
C2—C1—H1A | 120.8 | C5—C6—C1 | 121.6 (3) |
C6—C1—H1A | 120.8 | C5—C6—N | 119.9 (3) |
C1—C2—C3 | 120.4 (3) | C1—C6—N | 118.5 (3) |
C1—C2—H2A | 119.8 | C4—C7—H7A | 109.5 |
C3—C2—H2A | 119.8 | C4—C7—H7B | 109.5 |
O3—C3—C2 | 115.9 (3) | H7A—C7—H7B | 109.5 |
O3—C3—C4 | 122.7 (3) | C4—C7—H7C | 109.5 |
C2—C3—C4 | 121.5 (3) | H7A—C7—H7C | 109.5 |
C5—C4—C3 | 117.7 (3) | H7B—C7—H7C | 109.5 |
O1—N—C6—C5 | −1.5 (5) | O3—C3—C4—C5 | −178.4 (3) |
O2—N—C6—C5 | 178.6 (3) | C2—C3—C4—C5 | 1.8 (5) |
O1—N—C6—C1 | 177.3 (3) | O3—C3—C4—C7 | 1.4 (5) |
O2—N—C6—C1 | −2.6 (5) | C2—C3—C4—C7 | −178.3 (3) |
C6—C1—C2—C3 | −1.0 (5) | C3—C4—C5—C6 | −1.5 (5) |
C2—C1—C6—C5 | 1.2 (5) | C7—C4—C5—C6 | 178.6 (3) |
C2—C1—C6—N | −177.5 (3) | C4—C5—C6—C1 | 0.0 (5) |
C1—C2—C3—O3 | 179.7 (3) | C4—C5—C6—N | 178.8 (3) |
C1—C2—C3—C4 | −0.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.82 | 2.10 | 2.770 (4) | 138 |
C7—H7C···O1ii | 0.96 | 2.57 | 3.505 (5) | 165 |
Symmetry codes: (i) x, y−1, z; (ii) −x−1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C7H7NO3 |
Mr | 153.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 5.6210 (11), 8.7420 (17), 14.300 (3) |
β (°) | 100.71 (3) |
V (Å3) | 690.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.966, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1378, 1245, 870 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.181, 1.01 |
No. of reflections | 1245 |
No. of parameters | 102 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.24 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2i | 0.82 | 2.10 | 2.770 (4) | 138.00 |
C7—H7C···O1ii | 0.96 | 2.57 | 3.505 (5) | 165.00 |
Symmetry codes: (i) x, y−1, z; (ii) −x−1, −y+1, −z+2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Ahmed, K. & Ashwini, K. (2004). Ultrason. Sonochem. pp. 455–457. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of benzoic acids are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms O1, O2, O3, N and C7 are 0.112 (3), 0.023 (3), 0.049 (3), 0.026 (4) and -0.042 (3) Å away from the ring plane, respectively. So, the molecule is nearly planar.
In the crystal structure, intermolecular O-H···O and C-H···O interactions (Table 1) link the molecules into a network, in which they may be effective in the stabilization of the structure.