organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4-nitro­phenol

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 14 May 2009; accepted 18 May 2009; online 23 May 2009)

The mol­ecule of the title compound, C7H7NO3, is nearly planar [maximum deviation 0.112 (3) Å for one of the notro O atoms]. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For a related structure, see: Ahmed & Ashwini (2004[Ahmed, K. & Ashwini, K. (2004). Ultrason. Sonochem. pp. 455-457.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO3

  • Mr = 153.14

  • Monoclinic, P 21 /n

  • a = 5.6210 (11) Å

  • b = 8.7420 (17) Å>

  • c = 14.300 (3) Å

  • β = 100.71 (3)°

  • V = 690.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.966, Tmax = 0.988

  • 1378 measured reflections

  • 1245 independent reflections

  • 870 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.181

  • S = 1.01

  • 1245 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.10 2.770 (4) 138
C7—H7C⋯O1ii 0.96 2.57 3.505 (5) 165
Symmetry codes: (i) x, y-1, z; (ii) -x-1, -y+1, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acids are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms O1, O2, O3, N and C7 are 0.112 (3), 0.023 (3), 0.049 (3), 0.026 (4) and -0.042 (3) Å away from the ring plane, respectively. So, the molecule is nearly planar.

In the crystal structure, intermolecular O-H···O and C-H···O interactions (Table 1) link the molecules into a network, in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Ahmed & Ashwini (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, ethyl acetate (150 ml), 2-methyl-phenol (5.9 g) and zinc chloride (7.4 g) are placed in an ultrasonic cleaning bath equipped with a round botton flask, and then nitric acid (5.9 g) was added dropwise in 3 min. After the reaction was completed, water (200 ml) was added. After evaporation of the organic layer, the obtained product (Ahmed & Ashwini, 2004) was crystallized by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Methyl-4-nitrophenol top
Crystal data top
C7H7NO3F(000) = 320
Mr = 153.14Dx = 1.473 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.6210 (11) Åθ = 9–13°
b = 8.7420 (17) ŵ = 0.12 mm1
c = 14.300 (3) ÅT = 294 K
β = 100.71 (3)°Block, colorless
V = 690.4 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
870 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 2.7°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.966, Tmax = 0.988l = 1716
1378 measured reflections3 standard reflections every 120 min
1245 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.08P)2 + 0.74P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1245 reflectionsΔρmax = 0.25 e Å3
102 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C7H7NO3V = 690.4 (2) Å3
Mr = 153.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6210 (11) ŵ = 0.12 mm1
b = 8.7420 (17) ÅT = 294 K
c = 14.300 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.71 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
870 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.966, Tmax = 0.9883 standard reflections every 120 min
1378 measured reflections intensity decay: 1%
1245 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
1245 reflectionsΔρmin = 0.24 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3440 (5)0.6807 (3)0.9304 (2)0.0769 (9)
O20.0576 (5)0.7542 (3)0.8605 (2)0.0682 (8)
O30.0480 (4)0.0536 (3)0.81980 (17)0.0567 (7)
H3A0.03720.00790.84170.085*
N0.1770 (5)0.6536 (3)0.8896 (2)0.0490 (8)
C10.0652 (6)0.4640 (4)0.8248 (2)0.0478 (9)
H1A0.15250.54290.80340.057*
C20.1146 (6)0.3143 (4)0.8076 (2)0.0487 (9)
H2A0.23520.29080.77340.058*
C30.0137 (6)0.1979 (4)0.8410 (2)0.0417 (8)
C40.1941 (5)0.2284 (3)0.8932 (2)0.0410 (8)
C50.2457 (6)0.3796 (4)0.9085 (2)0.0415 (8)
H5A0.36780.40380.94180.050*
C60.1175 (5)0.4950 (4)0.8747 (2)0.0413 (8)
C70.3278 (6)0.1019 (4)0.9313 (3)0.0531 (9)
H7A0.21430.03600.97070.080*
H7B0.41720.04410.87930.080*
H7C0.43750.14430.96840.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.093 (2)0.0485 (16)0.104 (2)0.0137 (14)0.0576 (18)0.0051 (15)
O20.0861 (19)0.0303 (13)0.097 (2)0.0030 (12)0.0392 (16)0.0063 (13)
O30.0661 (15)0.0341 (13)0.0802 (17)0.0000 (11)0.0405 (13)0.0053 (11)
N0.0594 (18)0.0337 (15)0.0567 (17)0.0039 (13)0.0180 (14)0.0005 (13)
C10.0539 (19)0.0371 (17)0.059 (2)0.0036 (14)0.0281 (17)0.0044 (15)
C20.0496 (19)0.0413 (18)0.063 (2)0.0036 (15)0.0302 (17)0.0024 (16)
C30.0438 (17)0.0339 (15)0.0503 (18)0.0019 (14)0.0168 (14)0.0029 (14)
C40.0389 (16)0.0397 (17)0.0473 (18)0.0032 (13)0.0156 (14)0.0012 (14)
C50.0403 (16)0.0407 (17)0.0469 (17)0.0021 (14)0.0171 (14)0.0005 (14)
C60.0461 (17)0.0312 (16)0.0500 (18)0.0009 (13)0.0177 (14)0.0006 (13)
C70.054 (2)0.045 (2)0.068 (2)0.0034 (15)0.0285 (17)0.0007 (16)
Geometric parameters (Å, º) top
O3—C31.357 (4)C2—H2A0.9300
O3—H3A0.8200C3—C41.393 (4)
N—O11.217 (3)C4—C51.379 (4)
N—O21.225 (4)C4—C71.496 (4)
N—C61.451 (4)C5—C61.379 (4)
C1—C21.370 (5)C5—H5A0.9300
C1—C61.382 (4)C7—H7A0.9600
C1—H1A0.9300C7—H7B0.9600
C2—C31.382 (4)C7—H7C0.9600
C3—O3—H3A109.5C5—C4—C7121.1 (3)
O1—N—O2122.9 (3)C3—C4—C7121.2 (3)
O1—N—C6118.4 (3)C6—C5—C4120.5 (3)
O2—N—C6118.7 (3)C6—C5—H5A119.8
C2—C1—C6118.4 (3)C4—C5—H5A119.8
C2—C1—H1A120.8C5—C6—C1121.6 (3)
C6—C1—H1A120.8C5—C6—N119.9 (3)
C1—C2—C3120.4 (3)C1—C6—N118.5 (3)
C1—C2—H2A119.8C4—C7—H7A109.5
C3—C2—H2A119.8C4—C7—H7B109.5
O3—C3—C2115.9 (3)H7A—C7—H7B109.5
O3—C3—C4122.7 (3)C4—C7—H7C109.5
C2—C3—C4121.5 (3)H7A—C7—H7C109.5
C5—C4—C3117.7 (3)H7B—C7—H7C109.5
O1—N—C6—C51.5 (5)O3—C3—C4—C5178.4 (3)
O2—N—C6—C5178.6 (3)C2—C3—C4—C51.8 (5)
O1—N—C6—C1177.3 (3)O3—C3—C4—C71.4 (5)
O2—N—C6—C12.6 (5)C2—C3—C4—C7178.3 (3)
C6—C1—C2—C31.0 (5)C3—C4—C5—C61.5 (5)
C2—C1—C6—C51.2 (5)C7—C4—C5—C6178.6 (3)
C2—C1—C6—N177.5 (3)C4—C5—C6—C10.0 (5)
C1—C2—C3—O3179.7 (3)C4—C5—C6—N178.8 (3)
C1—C2—C3—C40.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.102.770 (4)138
C7—H7C···O1ii0.962.573.505 (5)165
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H7NO3
Mr153.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.6210 (11), 8.7420 (17), 14.300 (3)
β (°) 100.71 (3)
V3)690.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
1378, 1245, 870
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.181, 1.01
No. of reflections1245
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.102.770 (4)138.00
C7—H7C···O1ii0.962.573.505 (5)165.00
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAhmed, K. & Ashwini, K. (2004). Ultrason. Sonochem. pp. 455–457.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds