organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-anilino-3-nitro­benzoate

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China, and cCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 14 May 2009; accepted 19 May 2009; online 23 May 2009)

In the mol­ecule of the title compound, C14H12N2O4, the aromatic rings are oriented at a dihedral angle of 51.50 (4)°. An intra­molecular N—H⋯O inter­action results in the formation of a six-membered ring having an envelope conformation. In the crystal structure, inter­molecular N—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers. ππ contacts between the benzene rings [centroid–centroid distance = 3.708 (1) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Schelz (1978[Schelz, D. (1978). Helv. Chim. Acta, 61, 2452-2462.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4

  • Mr = 272.26

  • Monoclinic, P 21 /c

  • a = 11.641 (2) Å

  • b = 16.349 (3) Å

  • c = 7.2490 (14) Å

  • β = 107.50 (3)°

  • V = 1315.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2569 measured reflections

  • 2367 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.178

  • S = 1.00

  • 2367 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.01 2.650 (4) 130
N1—H1A⋯O1i 0.86 2.53 3.314 (4) 152
Symmetry code: (i) -x, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C7-C12) are, of course, planar and they are oriented at a dihedral angle of A/B = 51.50 (4)°. Intramolecular N-H···O interaction (Table 1) results in the formation of a six-membered ring C (O1/N1/N2/C7/C12/H1A) having envelope conformation with atom O1 displaced by 0.125 (4) Å from the plane of the other ring atoms.

In the crystal structure, intra- and intermolecular N-H···O interactions (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg2—Cg2i [symmetry code: (i) x, 1/2 - y, z - 1/2, where Cg2 is centroid of the ring B (C7-C12)] may further stabilize the structure, with centroid-centroid distance of 3.708 (1) Å.

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthesis, see: Schelz (1978).

Experimental top

For the preparation of the title compound, methyl 4-chloro-3-nitrobenzoate (5.0 g, 23 mmol) was heated in distilled aniline (10 ml) for 18 h at 393 K. After the reaction was completed, ethanol (50 ml) was added, at room temperature. The yellow precipitate was washed with cold ethanol (2 × 20 ml), and then dried (yield; 4.7 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 4-anilino-3-nitrobenzoate top
Crystal data top
C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.641 (2) Åθ = 10–12°
b = 16.349 (3) ŵ = 0.10 mm1
c = 7.2490 (14) ÅT = 294 K
β = 107.50 (3)°Block, colorless
V = 1315.8 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1335 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 190
Tmin = 0.970, Tmax = 0.990l = 08
2569 measured reflections3 standard reflections every 120 min
2367 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.08P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2367 reflectionsΔρmax = 0.33 e Å3
175 parametersΔρmin = 0.44 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H12N2O4V = 1315.8 (5) Å3
Mr = 272.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.641 (2) ŵ = 0.10 mm1
b = 16.349 (3) ÅT = 294 K
c = 7.2490 (14) Å0.30 × 0.20 × 0.10 mm
β = 107.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1335 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.970, Tmax = 0.9903 standard reflections every 120 min
2569 measured reflections intensity decay: 1%
2367 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066175 parameters
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
2367 reflectionsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0837 (2)0.05896 (17)0.1085 (4)0.078
O20.2328 (2)0.11328 (16)0.2971 (4)0.0677 (9)
O30.1608 (3)0.48217 (18)0.1788 (5)0.0848 (10)
O40.2843 (2)0.39247 (16)0.3690 (4)0.0648 (8)
N10.1155 (2)0.14101 (18)0.0669 (4)0.0501 (8)
H1A0.08360.09320.04460.060*
N20.1335 (3)0.11733 (17)0.1801 (5)0.0479 (8)
C10.4811 (4)0.1408 (3)0.3820 (7)0.0754 (14)
H1B0.56210.13970.45380.091*
C20.4423 (4)0.1887 (3)0.2185 (7)0.0721 (13)
H2A0.49730.22000.17890.087*
C30.3218 (3)0.1902 (3)0.1139 (6)0.0575 (11)
H3A0.29590.22220.00310.069*
C40.2393 (3)0.1441 (2)0.1731 (5)0.0440 (9)
C50.2794 (3)0.0959 (2)0.3384 (5)0.0504 (10)
H5A0.22540.06470.38080.061*
C60.3991 (4)0.0951 (3)0.4367 (6)0.0638 (12)
H6A0.42590.06210.54570.077*
C70.0420 (3)0.2050 (2)0.0031 (5)0.0378 (8)
C80.0795 (3)0.2868 (2)0.0439 (5)0.0460 (9)
H8A0.15670.29630.12600.055*
C90.0075 (3)0.3514 (2)0.0258 (5)0.0465 (9)
H9A0.03630.40390.01010.056*
C100.1095 (3)0.3414 (2)0.1510 (5)0.0431 (9)
C110.1507 (3)0.2631 (2)0.1962 (5)0.0416 (9)
H11A0.22840.25490.27770.050*
C120.0786 (3)0.1958 (2)0.1226 (5)0.0385 (8)
C130.1830 (4)0.4131 (2)0.2287 (6)0.0509 (10)
C140.3604 (4)0.4579 (3)0.4546 (7)0.0886 (16)
H14A0.42930.43720.55280.133*
H14B0.31740.49540.51160.133*
H14C0.38650.48580.35760.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0640.0600.0910.0060.0050.000
O20.0506 (16)0.0573 (18)0.075 (2)0.0069 (14)0.0122 (15)0.0036 (15)
O30.090 (2)0.0424 (18)0.108 (3)0.0121 (16)0.009 (2)0.0030 (17)
O40.0496 (16)0.0559 (18)0.078 (2)0.0124 (13)0.0026 (15)0.0116 (15)
N10.0426 (17)0.0421 (17)0.056 (2)0.0071 (14)0.0013 (15)0.0022 (15)
N20.0406 (17)0.0336 (16)0.058 (2)0.0125 (13)0.0025 (16)0.0141 (14)
C10.045 (2)0.082 (3)0.082 (3)0.021 (2)0.007 (2)0.010 (3)
C20.044 (2)0.086 (3)0.086 (4)0.006 (2)0.017 (2)0.007 (3)
C30.044 (2)0.071 (3)0.053 (3)0.010 (2)0.0090 (19)0.012 (2)
C40.040 (2)0.044 (2)0.042 (2)0.0085 (17)0.0045 (17)0.0034 (17)
C50.053 (2)0.046 (2)0.046 (2)0.0152 (18)0.0058 (19)0.0013 (18)
C60.061 (3)0.071 (3)0.049 (3)0.021 (2)0.000 (2)0.001 (2)
C70.0369 (18)0.043 (2)0.0349 (19)0.0075 (16)0.0124 (15)0.0044 (16)
C80.039 (2)0.054 (2)0.043 (2)0.0007 (17)0.0093 (17)0.0032 (18)
C90.047 (2)0.038 (2)0.054 (2)0.0001 (17)0.0157 (18)0.0050 (18)
C100.047 (2)0.044 (2)0.042 (2)0.0069 (17)0.0171 (17)0.0040 (17)
C110.0335 (18)0.051 (2)0.039 (2)0.0018 (16)0.0094 (16)0.0036 (17)
C120.0343 (18)0.0368 (19)0.044 (2)0.0010 (15)0.0115 (16)0.0030 (16)
C130.058 (2)0.042 (2)0.057 (3)0.0085 (19)0.022 (2)0.0058 (19)
C140.068 (3)0.090 (4)0.096 (4)0.037 (3)0.006 (3)0.029 (3)
Geometric parameters (Å, º) top
O1—N21.155 (3)C5—C61.361 (5)
O2—N21.213 (3)C5—H5A0.9300
O3—C131.190 (5)C6—H6A0.9300
O4—C131.348 (4)C7—C81.416 (5)
O4—C141.409 (5)C7—C121.419 (4)
N1—C71.349 (4)C8—C91.348 (5)
N1—C41.416 (4)C8—H8A0.9300
N1—H1A0.8600C9—C101.401 (5)
N2—C121.438 (4)C9—H9A0.9300
C1—C61.361 (6)C10—C111.372 (5)
C1—C21.378 (6)C10—C131.461 (5)
C1—H1B0.9300C11—C121.389 (4)
C2—C31.379 (5)C11—H11A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.387 (5)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.392 (5)
C13—O4—C14115.7 (3)N1—C7—C12123.1 (3)
C7—N1—C4127.1 (3)C8—C7—C12115.0 (3)
C7—N1—H1A116.5C9—C8—C7122.6 (3)
C4—N1—H1A116.5C9—C8—H8A118.7
O1—N2—O2120.9 (3)C7—C8—H8A118.7
O1—N2—C12119.2 (3)C8—C9—C10121.6 (3)
O2—N2—C12119.9 (3)C8—C9—H9A119.2
C6—C1—C2119.0 (4)C10—C9—H9A119.2
C6—C1—H1B120.5C11—C10—C9117.8 (3)
C2—C1—H1B120.5C11—C10—C13122.3 (3)
C1—C2—C3119.9 (4)C9—C10—C13119.9 (3)
C1—C2—H2A120.1C10—C11—C12121.3 (3)
C3—C2—H2A120.1C10—C11—H11A119.3
C2—C3—C4120.3 (4)C12—C11—H11A119.3
C2—C3—H3A119.8C11—C12—C7121.5 (3)
C4—C3—H3A119.8C11—C12—N2115.5 (3)
C3—C4—C5119.3 (3)C7—C12—N2122.9 (3)
C3—C4—N1122.6 (3)O3—C13—O4121.9 (4)
C5—C4—N1118.1 (3)O3—C13—C10126.6 (4)
C6—C5—C4118.7 (4)O4—C13—C10111.6 (3)
C6—C5—H5A120.6O4—C14—H14A109.5
C4—C5—H5A120.6O4—C14—H14B109.5
C5—C6—C1122.7 (4)H14A—C14—H14B109.5
C5—C6—H6A118.7O4—C14—H14C109.5
C1—C6—H6A118.7H14A—C14—H14C109.5
N1—C7—C8121.8 (3)H14B—C14—H14C109.5
C6—C1—C2—C30.3 (7)C13—C10—C11—C12179.1 (4)
C1—C2—C3—C40.5 (7)C10—C11—C12—C72.3 (5)
C2—C3—C4—C50.5 (6)C10—C11—C12—N2179.4 (3)
C2—C3—C4—N1177.5 (4)N1—C7—C12—C11178.3 (3)
C7—N1—C4—C348.9 (5)C8—C7—C12—C113.8 (5)
C7—N1—C4—C5134.0 (4)N1—C7—C12—N20.1 (5)
C3—C4—C5—C60.3 (6)C8—C7—C12—N2178.0 (3)
N1—C4—C5—C6176.9 (3)O1—N2—C12—C11171.9 (4)
C4—C5—C6—C11.2 (6)O2—N2—C12—C115.4 (5)
C2—C1—C6—C51.2 (7)O1—N2—C12—C79.8 (6)
C4—N1—C7—C87.9 (6)O2—N2—C12—C7172.9 (3)
C4—N1—C7—C12174.4 (3)C14—O4—C13—O31.2 (6)
N1—C7—C8—C9179.6 (4)C14—O4—C13—C10179.3 (4)
C12—C7—C8—C92.5 (5)C11—C10—C13—O3169.8 (4)
C7—C8—C9—C100.3 (6)C9—C10—C13—O310.4 (6)
C8—C9—C10—C112.1 (6)C11—C10—C13—O49.8 (5)
C8—C9—C10—C13177.8 (3)C9—C10—C13—O4170.1 (3)
C9—C10—C11—C120.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.012.650 (4)130
N1—H1A···O1i0.862.533.314 (4)152
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O4
Mr272.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.641 (2), 16.349 (3), 7.2490 (14)
β (°) 107.50 (3)
V3)1315.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2569, 2367, 1335
Rint0.026
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.178, 1.00
No. of reflections2367
No. of parameters175
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.44

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.012.650 (4)130
N1—H1A···O1i0.862.533.314 (4)152
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchelz, D. (1978). Helv. Chim. Acta, 61, 2452–2462.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds