organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-nitro-4-(n-propyl­amino)benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China, and cCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 14 May 2009; accepted 18 May 2009; online 23 May 2009)

In the mol­ecule of the title compound, C12H16N2O4, an intra­molecular N—H⋯O hydrogen bond results in the formation of a six-membered ring having an envelope conformation. In the crystal structure, a bifurcated intra/intermolecular N—H⋯(O,O) hydrogen bond generates inversion dimers.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Ates-Alagoz & Buyukbingol (2001[Ates-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455-460.]); Oezden et al. (2005[Oezden, S., Atabey, D., Yildiz, S. & Goeker, H. (2005). Bioorg. Med. Chem. 13, 1587-1597.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O4

  • Mr = 252.27

  • Triclinic, [P \overline 1]

  • a = 4.4400 (9) Å

  • b = 12.606 (3) Å

  • c = 13.209 (3) Å

  • α = 61.710 (19)°

  • β = 83.02 (3)°

  • γ = 81.75 (3)°

  • V = 643.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.990

  • 2593 measured reflections

  • 2281 independent reflections

  • 924 reflections with I > 2σ(I)

  • Rint = 0.083

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.165

  • S = 1.00

  • 2281 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 2.02 2.635 (5) 128
N2—H2A⋯O4i 0.86 2.55 3.324 (6) 150
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring B (O4/N1/N2/C6/C7/H2A) having envelope conformation with atom O4 displaced by -0.116 (3) Å from the plane of the other ring atoms.

In the crystal structure, intra- and intermolecular N-H···O interactions (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthesis, see: Ates-Alagoz & Buyukbingol (2001); Oezden et al. (2005).

Experimental top

For the preparation of the title compound, ethyl 4-chloro-3-nitrobenzoate (5.3 g, 23 mmol) was refluxed in n-propyl amine (25 ml) and tetrahydrofuran (50 ml) for 2 h. Then, solvents were evaporated and water was added to give yellow precipate, which was collected by filtration and washed with cold ethanol (2 × 15 ml) to afford the yellow solid (yield; 4.8 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Ethyl 3-nitro-4-(n-propylamino)benzoate top
Crystal data top
C12H16N2O4Z = 2
Mr = 252.27F(000) = 268
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4400 (9) ÅCell parameters from 25 reflections
b = 12.606 (3) Åθ = 9–11°
c = 13.209 (3) ŵ = 0.10 mm1
α = 61.710 (19)°T = 294 K
β = 83.02 (3)°Block, colorless
γ = 81.75 (3)°0.20 × 0.10 × 0.10 mm
V = 643.1 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 1415
Tmin = 0.981, Tmax = 0.990l = 1515
2593 measured reflections3 standard reflections every 120 min
2281 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2281 reflectionsΔρmax = 0.19 e Å3
157 parametersΔρmin = 0.14 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H16N2O4γ = 81.75 (3)°
Mr = 252.27V = 643.1 (3) Å3
Triclinic, P1Z = 2
a = 4.4400 (9) ÅMo Kα radiation
b = 12.606 (3) ŵ = 0.10 mm1
c = 13.209 (3) ÅT = 294 K
α = 61.710 (19)°0.20 × 0.10 × 0.10 mm
β = 83.02 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
924 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.083
Tmin = 0.981, Tmax = 0.9903 standard reflections every 120 min
2593 measured reflections intensity decay: 1%
2281 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067157 parameters
wR(F2) = 0.165H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2281 reflectionsΔρmin = 0.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3870 (7)0.0274 (2)0.8647 (2)0.0865 (10)
O20.2837 (8)0.1310 (3)0.7632 (3)0.1130 (12)
O30.0492 (8)0.3592 (2)0.7202 (2)0.1056 (12)
O40.2630 (7)0.4310 (3)0.5801 (2)0.104
N10.1072 (8)0.3526 (3)0.6413 (3)0.0706 (10)
N20.4396 (8)0.3293 (3)0.4457 (3)0.0842 (11)
H2A0.44910.39360.45210.101*
C10.3968 (13)0.2145 (4)1.0388 (4)0.127 (2)
H1A0.52670.27461.09180.190*
H1B0.30790.18111.07880.190*
H1C0.23790.25111.00580.190*
C20.5738 (10)0.1193 (4)0.9484 (4)0.1006 (16)
H2B0.73390.08250.98190.121*
H2C0.66960.15380.91000.121*
C30.2502 (11)0.0448 (4)0.7781 (4)0.0809 (13)
C40.0655 (9)0.0540 (3)0.6944 (3)0.0664 (11)
C50.0537 (8)0.1582 (3)0.7019 (3)0.0592 (10)
H5A0.16380.16780.76200.071*
C60.1163 (8)0.2486 (3)0.6230 (3)0.0584 (10)
C70.2859 (8)0.2413 (3)0.5268 (3)0.0588 (10)
C80.2554 (10)0.1315 (4)0.5233 (3)0.0820 (13)
H8A0.35030.12170.46120.098*
C90.1030 (11)0.0445 (4)0.6018 (4)0.0834 (14)
H9A0.10640.02640.59610.100*
C100.5976 (13)0.3193 (4)0.3427 (4)0.129 (2)
H10A0.80400.28210.36100.155*
H10B0.49270.26590.32810.155*
C110.6104 (14)0.4292 (5)0.2425 (4)0.138 (2)
H11A0.71990.48210.25610.165*
H11B0.40460.46740.22460.165*
C120.7633 (11)0.4158 (4)0.1409 (3)0.1116 (17)
H12A0.77680.49440.07580.167*
H12B0.64650.36920.12290.167*
H12C0.96450.37520.15910.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.082 (2)0.0819 (19)0.0924 (19)0.0227 (18)0.0007 (18)0.0351 (17)
O20.149 (3)0.0806 (19)0.122 (2)0.028 (2)0.029 (2)0.0475 (19)
O30.128 (3)0.103 (2)0.104 (2)0.035 (2)0.038 (2)0.0672 (19)
O40.1230.1150.0970.0560.0210.063
N10.068 (2)0.076 (2)0.0711 (19)0.031 (2)0.0100 (19)0.0344 (17)
N20.073 (3)0.088 (2)0.074 (2)0.010 (2)0.006 (2)0.0304 (18)
C10.133 (5)0.088 (3)0.104 (3)0.007 (4)0.004 (4)0.007 (3)
C20.070 (4)0.089 (3)0.126 (4)0.012 (3)0.017 (3)0.033 (3)
C30.079 (4)0.063 (3)0.094 (3)0.001 (3)0.041 (3)0.025 (3)
C40.058 (3)0.066 (2)0.084 (3)0.016 (2)0.030 (2)0.041 (2)
C50.050 (3)0.065 (2)0.067 (2)0.002 (2)0.010 (2)0.034 (2)
C60.053 (3)0.071 (2)0.059 (2)0.005 (2)0.013 (2)0.037 (2)
C70.043 (2)0.064 (2)0.054 (2)0.021 (2)0.0114 (19)0.0212 (19)
C80.092 (4)0.090 (3)0.068 (3)0.036 (3)0.019 (3)0.049 (2)
C90.104 (4)0.069 (3)0.089 (3)0.014 (3)0.023 (3)0.048 (2)
C100.132 (4)0.115 (4)0.088 (3)0.026 (3)0.038 (3)0.026 (3)
C110.155 (5)0.133 (4)0.091 (3)0.031 (4)0.014 (4)0.041 (3)
C120.106 (4)0.132 (4)0.066 (2)0.012 (3)0.005 (3)0.030 (3)
Geometric parameters (Å, º) top
O1—C31.326 (5)C4—C91.400 (5)
O1—C21.446 (4)C5—C61.373 (4)
O2—C31.223 (4)C5—H5A0.9300
O3—N11.211 (3)C6—C71.432 (4)
O4—N11.188 (3)C7—C81.432 (5)
N1—C61.436 (4)C8—C91.304 (5)
N2—C71.326 (4)C8—H8A0.9300
N2—C101.505 (5)C9—H9A0.9300
N2—H2A0.8600C10—C111.393 (5)
C1—C21.443 (5)C10—H10A0.9700
C1—H1A0.9600C10—H10B0.9700
C1—H1B0.9600C11—C121.500 (5)
C1—H1C0.9600C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C2—H2C0.9700C12—H12A0.9600
C3—C41.488 (5)C12—H12B0.9600
C4—C51.372 (4)C12—H12C0.9600
C3—O1—C2117.2 (3)C5—C6—N1115.8 (3)
O4—N1—O3120.0 (3)C7—C6—N1121.9 (3)
O4—N1—C6119.2 (3)N2—C7—C6123.9 (4)
O3—N1—C6120.8 (3)N2—C7—C8123.4 (3)
C7—N2—C10121.4 (4)C6—C7—C8112.6 (3)
C7—N2—H2A119.3C9—C8—C7124.2 (4)
C10—N2—H2A119.3C9—C8—H8A117.9
C2—C1—H1A109.5C7—C8—H8A117.9
C2—C1—H1B109.5C8—C9—C4122.3 (4)
H1A—C1—H1B109.5C8—C9—H9A118.8
C2—C1—H1C109.5C4—C9—H9A118.8
H1A—C1—H1C109.5C11—C10—N2114.4 (4)
H1B—C1—H1C109.5C11—C10—H10A108.7
C1—C2—O1111.7 (4)N2—C10—H10A108.7
C1—C2—H2B109.3C11—C10—H10B108.7
O1—C2—H2B109.3N2—C10—H10B108.7
C1—C2—H2C109.3H10A—C10—H10B107.6
O1—C2—H2C109.3C10—C11—C12113.1 (4)
H2B—C2—H2C107.9C10—C11—H11A109.0
O2—C3—O1123.7 (4)C12—C11—H11A109.0
O2—C3—C4121.8 (5)C10—C11—H11B109.0
O1—C3—C4114.4 (4)C12—C11—H11B109.0
C5—C4—C9116.8 (4)H11A—C11—H11B107.8
C5—C4—C3122.8 (4)C11—C12—H12A109.5
C9—C4—C3120.4 (4)C11—C12—H12B109.5
C4—C5—C6121.8 (3)H12A—C12—H12B109.5
C4—C5—H5A119.1C11—C12—H12C109.5
C6—C5—H5A119.1H12A—C12—H12C109.5
C5—C6—C7122.2 (3)H12B—C12—H12C109.5
C3—O1—C2—C187.3 (5)C5—C6—C7—N2176.3 (4)
C2—O1—C3—O23.0 (6)N1—C6—C7—N22.0 (6)
C2—O1—C3—C4179.2 (3)C5—C6—C7—C80.2 (5)
O2—C3—C4—C5172.1 (4)N1—C6—C7—C8178.1 (3)
O1—C3—C4—C54.1 (6)N2—C7—C8—C9179.4 (4)
O2—C3—C4—C96.9 (7)C6—C7—C8—C93.2 (6)
O1—C3—C4—C9176.9 (4)C7—C8—C9—C44.6 (7)
C9—C4—C5—C60.4 (6)C5—C4—C9—C82.6 (6)
C3—C4—C5—C6179.4 (4)C3—C4—C9—C8176.5 (4)
C4—C5—C6—C71.5 (6)C7—N2—C10—C11148.5 (5)
C4—C5—C6—N1179.9 (3)N2—C10—C11—C12178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.022.635 (5)128
N2—H2A···O4i0.862.553.324 (6)150
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H16N2O4
Mr252.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)4.4400 (9), 12.606 (3), 13.209 (3)
α, β, γ (°)61.710 (19), 83.02 (3), 81.75 (3)
V3)643.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2593, 2281, 924
Rint0.083
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.165, 1.00
No. of reflections2281
No. of parameters157
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.022.635 (5)128
N2—H2A···O4i0.862.553.324 (6)150
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtes-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455–460.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOezden, S., Atabey, D., Yildiz, S. & Goeker, H. (2005). Bioorg. Med. Chem. 13, 1587–1597.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds