organic compounds
4-Nitrobenzyl 2-chloroacetate
aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.edu.cn
In the molecule of the title compound, C9H8ClNO4, the nearly planar acetate moiety [maximum deviation = 0.015 (3) Å for an O atom] is oriented with respect to the plane of the aromatic ring at a dihedral angle of 73.03 (3)°. In the intermolecular C—H⋯O interactions link molecules into a network. π–π contacts between benzene rings [centroid–centroid distance = 4.000 (1) Å] may further stabilize the structure.
Related literature
For a related structure, see: Pyun et al. (2001). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809019278/hk2695sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019278/hk2695Isup2.hkl
For the preparation of the title compound, chloroacetyl chloride (1.1 g) and p-nitrobenzyl alcohol (1.53 g) were added into the mixture of pyridine (15 ml) and dichloromethane (30 ml) at 273–278 K. The gross products were extracted with n-hexane, washed with water, and dried under vaccum, and then recrystallized in dichloromethane (yield; 0.916 g) (Pyun et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C9H8ClNO4 | F(000) = 944 |
Mr = 229.61 | Dx = 1.530 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 13.636 (3) Å | θ = 9–13° |
b = 8.1570 (16) Å | µ = 0.38 mm−1 |
c = 18.878 (4) Å | T = 294 K |
β = 108.30 (3)° | Block, colorless |
V = 1993.5 (8) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | 1132 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
Graphite monochromator | θmax = 25.3°, θmin = 2.3° |
ω/2θ scans | h = −16→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→0 |
Tmin = 0.896, Tmax = 0.963 | l = −21→22 |
1892 measured reflections | 3 standard reflections every 120 min |
1814 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1P)2 + 2P] where P = (Fo2 + 2Fc2)/3 |
1814 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C9H8ClNO4 | V = 1993.5 (8) Å3 |
Mr = 229.61 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.636 (3) Å | µ = 0.38 mm−1 |
b = 8.1570 (16) Å | T = 294 K |
c = 18.878 (4) Å | 0.30 × 0.20 × 0.10 mm |
β = 108.30 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1132 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.055 |
Tmin = 0.896, Tmax = 0.963 | 3 standard reflections every 120 min |
1892 measured reflections | intensity decay: 1% |
1814 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.31 e Å−3 |
1814 reflections | Δρmin = −0.28 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.85639 (10) | 0.10201 (17) | 0.74171 (7) | 0.0745 (5) | |
O1 | 0.6449 (2) | 0.0812 (4) | 0.75755 (16) | 0.0561 (8) | |
O2 | 0.6848 (2) | 0.2403 (4) | 0.86053 (15) | 0.0528 (8) | |
O3 | 0.6555 (4) | −0.3688 (5) | 1.1134 (2) | 0.1110 (17) | |
O4 | 0.6159 (3) | −0.5146 (4) | 1.0154 (2) | 0.0854 (11) | |
N | 0.6314 (3) | −0.3823 (5) | 1.0467 (2) | 0.0567 (10) | |
C1 | 0.8107 (3) | 0.2211 (5) | 0.8028 (3) | 0.0578 (11) | |
H1A | 0.8582 | 0.2114 | 0.8531 | 0.069* | |
H1B | 0.8085 | 0.3355 | 0.7883 | 0.069* | |
C2 | 0.7037 (3) | 0.1679 (5) | 0.8022 (2) | 0.0444 (9) | |
C3 | 0.5855 (3) | 0.2023 (5) | 0.8709 (2) | 0.0531 (11) | |
H3A | 0.5334 | 0.1868 | 0.8228 | 0.064* | |
H3B | 0.5641 | 0.2927 | 0.8961 | 0.064* | |
C4 | 0.5956 (3) | 0.0483 (5) | 0.9169 (2) | 0.0411 (9) | |
C5 | 0.6365 (3) | 0.0540 (5) | 0.9945 (2) | 0.0518 (10) | |
H5A | 0.6568 | 0.1545 | 1.0177 | 0.062* | |
C6 | 0.6476 (3) | −0.0835 (5) | 1.0369 (2) | 0.0544 (11) | |
H6A | 0.6741 | −0.0768 | 1.0886 | 0.065* | |
C7 | 0.6192 (3) | −0.2331 (5) | 1.0024 (2) | 0.0465 (10) | |
C8 | 0.5789 (3) | −0.2437 (5) | 0.9254 (2) | 0.0505 (10) | |
H8A | 0.5596 | −0.3446 | 0.9023 | 0.061* | |
C9 | 0.5679 (3) | −0.1045 (5) | 0.8843 (2) | 0.0507 (10) | |
H9A | 0.5411 | −0.1116 | 0.8326 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0709 (9) | 0.0894 (9) | 0.0776 (9) | −0.0099 (7) | 0.0438 (7) | −0.0052 (7) |
O1 | 0.0460 (17) | 0.0621 (18) | 0.0581 (17) | −0.0091 (14) | 0.0132 (14) | −0.0194 (15) |
O2 | 0.0569 (18) | 0.0581 (17) | 0.0450 (15) | −0.0098 (14) | 0.0182 (13) | −0.0066 (13) |
O3 | 0.195 (5) | 0.079 (3) | 0.056 (2) | −0.008 (3) | 0.036 (3) | 0.008 (2) |
O4 | 0.104 (3) | 0.056 (2) | 0.097 (3) | 0.005 (2) | 0.033 (2) | 0.009 (2) |
N | 0.055 (2) | 0.052 (2) | 0.066 (3) | 0.0018 (18) | 0.0231 (19) | 0.0086 (19) |
C1 | 0.054 (3) | 0.061 (3) | 0.060 (3) | −0.012 (2) | 0.020 (2) | −0.004 (2) |
C2 | 0.040 (2) | 0.043 (2) | 0.046 (2) | −0.0012 (19) | 0.0078 (18) | 0.0066 (19) |
C3 | 0.045 (2) | 0.059 (3) | 0.059 (3) | 0.0026 (19) | 0.023 (2) | −0.004 (2) |
C4 | 0.036 (2) | 0.047 (2) | 0.044 (2) | −0.0013 (17) | 0.0165 (16) | −0.0054 (17) |
C5 | 0.053 (3) | 0.048 (2) | 0.055 (3) | −0.007 (2) | 0.018 (2) | −0.012 (2) |
C6 | 0.052 (3) | 0.061 (3) | 0.046 (2) | −0.003 (2) | 0.0091 (19) | −0.010 (2) |
C7 | 0.035 (2) | 0.056 (2) | 0.051 (2) | 0.0016 (19) | 0.0182 (18) | 0.002 (2) |
C8 | 0.056 (3) | 0.044 (2) | 0.052 (2) | −0.011 (2) | 0.019 (2) | −0.004 (2) |
C9 | 0.051 (2) | 0.063 (3) | 0.039 (2) | −0.008 (2) | 0.0163 (18) | −0.009 (2) |
Cl—C1 | 1.765 (4) | C3—H3B | 0.9700 |
O1—C2 | 1.195 (5) | C4—C9 | 1.389 (5) |
O2—C2 | 1.344 (5) | C4—C5 | 1.394 (5) |
O2—C3 | 1.461 (5) | C5—C6 | 1.359 (6) |
N—O3 | 1.203 (5) | C5—H5A | 0.9300 |
N—O4 | 1.217 (5) | C6—C7 | 1.381 (6) |
N—C7 | 1.457 (5) | C6—H6A | 0.9300 |
C1—C2 | 1.519 (6) | C7—C8 | 1.385 (6) |
C1—H1A | 0.9700 | C8—C9 | 1.357 (6) |
C1—H1B | 0.9700 | C8—H8A | 0.9300 |
C3—C4 | 1.509 (6) | C9—H9A | 0.9300 |
C3—H3A | 0.9700 | ||
C2—O2—C3 | 116.2 (3) | C9—C4—C5 | 117.4 (4) |
O3—N—O4 | 122.7 (4) | C9—C4—C3 | 121.9 (3) |
O3—N—C7 | 118.0 (4) | C5—C4—C3 | 120.7 (4) |
O4—N—C7 | 119.4 (4) | C6—C5—C4 | 121.7 (4) |
C2—C1—Cl | 111.9 (3) | C6—C5—H5A | 119.2 |
C2—C1—H1A | 109.2 | C4—C5—H5A | 119.2 |
Cl—C1—H1A | 109.2 | C5—C6—C7 | 119.3 (4) |
C2—C1—H1B | 109.2 | C5—C6—H6A | 120.4 |
Cl—C1—H1B | 109.2 | C7—C6—H6A | 120.4 |
H1A—C1—H1B | 107.9 | C6—C7—C8 | 120.7 (4) |
O1—C2—O2 | 125.3 (4) | C6—C7—N | 120.2 (4) |
O1—C2—C1 | 127.2 (4) | C8—C7—N | 119.1 (4) |
O2—C2—C1 | 107.4 (3) | C9—C8—C7 | 118.9 (4) |
O2—C3—C4 | 109.5 (3) | C9—C8—H8A | 120.5 |
O2—C3—H3A | 109.8 | C7—C8—H8A | 120.5 |
C4—C3—H3A | 109.8 | C8—C9—C4 | 122.1 (4) |
O2—C3—H3B | 109.8 | C8—C9—H9A | 119.0 |
C4—C3—H3B | 109.8 | C4—C9—H9A | 119.0 |
H3A—C3—H3B | 108.2 | ||
C3—O2—C2—O1 | 2.8 (6) | C5—C6—C7—N | 179.3 (4) |
C3—O2—C2—C1 | −178.9 (3) | O3—N—C7—C6 | 8.3 (6) |
Cl—C1—C2—O1 | −14.4 (6) | O4—N—C7—C6 | −172.6 (4) |
Cl—C1—C2—O2 | 167.3 (3) | O3—N—C7—C8 | −171.9 (5) |
C2—O2—C3—C4 | 86.8 (4) | O4—N—C7—C8 | 7.3 (6) |
O2—C3—C4—C9 | −96.3 (4) | C6—C7—C8—C9 | 0.1 (6) |
O2—C3—C4—C5 | 81.6 (5) | N—C7—C8—C9 | −179.7 (4) |
C9—C4—C5—C6 | −1.1 (6) | C7—C8—C9—C4 | −0.2 (6) |
C3—C4—C5—C6 | −179.1 (4) | C5—C4—C9—C8 | 0.7 (6) |
C4—C5—C6—C7 | 1.0 (7) | C3—C4—C9—C8 | 178.6 (4) |
C5—C6—C7—C8 | −0.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O1i | 0.97 | 2.35 | 3.275 (5) | 160 |
C3—H3A···O1ii | 0.97 | 2.58 | 3.456 (5) | 151 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8ClNO4 |
Mr | 229.61 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 13.636 (3), 8.1570 (16), 18.878 (4) |
β (°) | 108.30 (3) |
V (Å3) | 1993.5 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.896, 0.963 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1892, 1814, 1132 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.191, 1.00 |
No. of reflections | 1814 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.28 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O1i | 0.97 | 2.35 | 3.275 (5) | 160 |
C3—H3A···O1ii | 0.97 | 2.58 | 3.456 (5) | 151 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, y, −z+3/2. |
Acknowledgements
The authors thank the Center for Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pyun, D. K., Jeong, W. J., Jung, H. J., Kim, J. H., Lee, J. S., Lee, C. H. & Kim, B. J. (2001). Synlett, 12, 1950–1952. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of p-nitrobenzyl alcohol are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Atoms N, C3, O3 and O4 are 0.005 (3), 0.027 (3), -0.146 (3) and 0.144 (4) Å away from the ring plane, respectively. On the other hand, (O1/O2/C1-C3) moiety is nearly planar with a maximum deviation of 0.015 (3) Å for atom O2 and it is oriented with respect to ring A at a dihedral angle of 73.03 (3)°.
In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, -y, -z, where Cg1 is centroid of the ring A (C4-C9) may further stabilize the structure, with centroid-centroid distance of 4.000 (1) Å.