organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­pyrimidine

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bSchool of Pharmaceutical Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 21 May 2009; accepted 24 May 2009; online 29 May 2009)

The mol­ecule of the title compound, C4H2Cl2N2, is almost planar [maximum deviation = 0.013 (3) Å for a Cl atom]. In the crystal structure, inter­molecular C—H⋯N inter­actions link the mol­ecules into chains.

Related literature

For a related structure, see: Bhasin et al. (2009[Bhasin, K. K., Arora, E., Kaur, K., Kang, S. K., Gobel, M., Klapoetke, T. M. & Mehta, S. K. (2009). Tetrahedron, 65, 247-252.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H2Cl2N2

  • Mr = 148.98

  • Monoclinic, P 21 /c

  • a = 7.5090 (15) Å

  • b = 10.776 (2) Å

  • c = 7.1980 (14) Å

  • β = 92.92 (3)°

  • V = 581.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.755, Tmax = 0.826

  • 1223 measured reflections

  • 1139 independent reflections

  • 733 reflections with I > 2σ(I)

  • Rint = 0.084

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.180

  • S = 1.01

  • 1139 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N2i 0.93 2.62 3.548 (7) 174
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of pyrimidine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (N1/N2/C1-C4) is, of course, planar. Atoms Cl1 and Cl2 are 0.012 (3) and 0.013 (3) Å away from the ring plane, respectively. So, the molecule is planar.

In the crystal structure, intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Bhasin et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, uracil (100 g, 0.82 mol) was dissolved in phosphorous oxychloride (400 ml) in a two-necked round-bottom flask (500 ml) equipped with a condenser. The solution was refluxed with stirring for 3.5 h at 383 K. The residual phosphorous oxychloride was removed in vacuo at 323 K, and the remaining oil was poured into ice (50 g) followed by extraction with chloroform (3 × 50 ml). The combined organic extract was washed with dilute sodium carbonate solution and dried over anhydrous sodium sulfate. The title compound was obtained by evaporation of solvent (Bhasin et al., 2009). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2,4-Dichloropyrimidine top
Crystal data top
C4H2Cl2N2F(000) = 296
Mr = 148.98Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.5090 (15) Åθ = 10–13°
b = 10.776 (2) ŵ = 0.99 mm1
c = 7.1980 (14) ÅT = 294 K
β = 92.92 (3)°Block, colorless
V = 581.7 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
733 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
ω/2θ scansh = 90
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.755, Tmax = 0.826l = 88
1223 measured reflections3 standard reflections every 120 min
1139 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.07P)2 + 1.45P]
where P = (Fo2 + 2Fc2)/3
1139 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C4H2Cl2N2V = 581.7 (2) Å3
Mr = 148.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5090 (15) ŵ = 0.99 mm1
b = 10.776 (2) ÅT = 294 K
c = 7.1980 (14) Å0.30 × 0.20 × 0.20 mm
β = 92.92 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
733 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.084
Tmin = 0.755, Tmax = 0.8263 standard reflections every 120 min
1223 measured reflections intensity decay: 1%
1139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
1139 reflectionsΔρmin = 0.32 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5768 (2)0.63809 (14)0.0975 (2)0.0762 (6)
Cl21.1679 (2)0.83010 (16)0.3510 (3)0.0862 (7)
N10.6273 (6)0.8744 (4)0.0912 (7)0.0612 (12)
N20.8628 (5)0.7492 (4)0.2211 (6)0.0555 (11)
C10.8975 (7)0.9681 (5)0.2072 (8)0.0652 (15)
H1B0.96651.03840.23210.078*
C20.7272 (8)0.9751 (5)0.1252 (9)0.0689 (16)
H2B0.68081.05260.09270.083*
C30.7027 (6)0.7699 (5)0.1403 (7)0.0485 (12)
C40.9577 (7)0.8520 (5)0.2490 (8)0.0562 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0693 (9)0.0670 (10)0.0897 (12)0.0184 (7)0.0222 (8)0.0065 (8)
Cl20.0581 (9)0.0731 (11)0.1233 (15)0.0074 (7)0.0370 (9)0.0038 (10)
N10.055 (3)0.059 (3)0.068 (3)0.013 (2)0.009 (2)0.002 (2)
N20.052 (2)0.042 (2)0.071 (3)0.0014 (18)0.017 (2)0.002 (2)
C10.070 (4)0.042 (3)0.081 (4)0.000 (2)0.013 (3)0.007 (3)
C20.079 (4)0.047 (3)0.081 (4)0.006 (3)0.000 (3)0.007 (3)
C30.045 (2)0.056 (3)0.044 (3)0.005 (2)0.006 (2)0.007 (2)
C40.051 (3)0.052 (3)0.064 (3)0.002 (2)0.008 (3)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C31.725 (5)N2—C41.327 (6)
Cl2—C41.723 (5)C1—C21.383 (8)
N1—C21.334 (7)C1—C41.358 (7)
N1—C31.302 (6)C1—H1B0.9300
N2—C31.327 (6)C2—H2B0.9300
C3—N1—C2114.9 (5)C1—C2—H2B118.9
C4—N2—C3113.2 (4)N1—C3—N2129.5 (5)
C4—C1—C2115.8 (5)N1—C3—Cl1115.9 (4)
C4—C1—H1B122.1N2—C3—Cl1114.6 (4)
C2—C1—H1B122.1N2—C4—C1124.4 (5)
N1—C2—C1122.2 (5)N2—C4—Cl2115.0 (4)
N1—C2—H2B118.9C1—C4—Cl2120.5 (4)
C3—N1—C2—C10.2 (9)C4—N2—C3—Cl1178.8 (4)
C4—C1—C2—N10.7 (10)C3—N2—C4—C12.5 (9)
C2—N1—C3—N21.0 (9)C3—N2—C4—Cl2179.2 (4)
C2—N1—C3—Cl1179.9 (4)C2—C1—C4—N22.0 (10)
C4—N2—C3—N12.0 (9)C2—C1—C4—Cl2179.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.932.623.548 (7)174
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H2Cl2N2
Mr148.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.5090 (15), 10.776 (2), 7.1980 (14)
β (°) 92.92 (3)
V3)581.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.755, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
1223, 1139, 733
Rint0.084
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.180, 1.01
No. of reflections1139
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N2i0.932.623.548 (7)174
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhasin, K. K., Arora, E., Kaur, K., Kang, S. K., Gobel, M., Klapoetke, T. M. & Mehta, S. K. (2009). Tetrahedron, 65, 247–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds