organic compounds
5-(3-Pyridyl)-1,3,4-thiadiazol-2-amine
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn
The title compound, C7H6N4S, was synthesized by reacting pyridine-3-carboxylic acid and thiosemicarbazide. The dihedral angle between the planes of the thiadiazole and pyridine rings is 32.42 (14)°. In the intermolecular N—H⋯N interactions link the molecules into a three-dimensional network, forming R22(8) ring motifs. π–π contacts between thiadiazole rings [centroid–centroid distance = 3.666 (1) Å] may further stabilize the structure.
Related literature
For general background, see: Nakagawa et al. (1996); Wang et al. (1999). For a related structure, see: Wang et al. (2009). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809019564/hk2699sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019564/hk2699Isup2.hkl
For the preparation of the title compound, 3-pyridine carboxylic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filted. Crystals of suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.
H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H6N4S | F(000) = 368 |
Mr = 178.22 | Dx = 1.469 Mg m−3 |
Monoclinic, P21/c | Melting point: 550 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.066 (2) Å | Cell parameters from 25 reflections |
b = 7.2380 (14) Å | θ = 9–12° |
c = 11.271 (2) Å | µ = 0.35 mm−1 |
β = 116.79 (3)° | T = 294 K |
V = 805.9 (3) Å3 | Block, colourless |
Z = 4 | 0.10 × 0.05 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 1220 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 25.3°, θmin = 2.1° |
ω/2θ scans | h = 0→13 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.966, Tmax = 0.983 | l = −13→12 |
1542 measured reflections | 3 standard reflections every 120 min |
1464 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3 |
1464 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C7H6N4S | V = 805.9 (3) Å3 |
Mr = 178.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.066 (2) Å | µ = 0.35 mm−1 |
b = 7.2380 (14) Å | T = 294 K |
c = 11.271 (2) Å | 0.10 × 0.05 × 0.05 mm |
β = 116.79 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1220 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.026 |
Tmin = 0.966, Tmax = 0.983 | 3 standard reflections every 120 min |
1542 measured reflections | intensity decay: 1% |
1464 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.29 e Å−3 |
1464 reflections | Δρmin = −0.34 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.69244 (6) | 0.09005 (8) | 0.45516 (5) | 0.0434 (3) | |
N1 | 0.9145 (3) | −0.2801 (4) | 0.8931 (2) | 0.0717 (7) | |
N2 | 0.63999 (19) | 0.1376 (3) | 0.65128 (17) | 0.0421 (5) | |
N3 | 0.57605 (19) | 0.2824 (3) | 0.56552 (18) | 0.0441 (5) | |
N4 | 0.5428 (3) | 0.3989 (3) | 0.3599 (2) | 0.0595 (7) | |
H4A | 0.4944 | 0.4890 | 0.3645 | 0.071* | |
H4B | 0.5580 | 0.3880 | 0.2918 | 0.071* | |
C1 | 0.9215 (3) | −0.4300 (4) | 0.8284 (3) | 0.0634 (8) | |
H1B | 0.9692 | −0.5315 | 0.8782 | 0.076* | |
C2 | 0.8626 (3) | −0.4435 (4) | 0.6931 (3) | 0.0628 (8) | |
H2B | 0.8714 | −0.5509 | 0.6523 | 0.075* | |
C3 | 0.7896 (3) | −0.2946 (3) | 0.6177 (3) | 0.0547 (7) | |
H3B | 0.7483 | −0.3004 | 0.5253 | 0.066* | |
C4 | 0.7792 (2) | −0.1374 (3) | 0.6817 (2) | 0.0407 (5) | |
C5 | 0.8440 (3) | −0.1375 (4) | 0.8191 (3) | 0.0578 (7) | |
H5A | 0.8380 | −0.0315 | 0.8628 | 0.069* | |
C6 | 0.7037 (2) | 0.0273 (3) | 0.6091 (2) | 0.0378 (5) | |
C7 | 0.5946 (2) | 0.2753 (3) | 0.4591 (2) | 0.0407 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0559 (4) | 0.0461 (4) | 0.0383 (4) | 0.0125 (2) | 0.0303 (3) | 0.0041 (2) |
N1 | 0.0875 (17) | 0.0765 (17) | 0.0569 (14) | 0.0339 (14) | 0.0375 (13) | 0.0256 (13) |
N2 | 0.0544 (11) | 0.0423 (11) | 0.0395 (10) | 0.0099 (9) | 0.0298 (9) | 0.0079 (8) |
N3 | 0.0609 (12) | 0.0421 (11) | 0.0427 (11) | 0.0143 (9) | 0.0353 (9) | 0.0107 (8) |
N4 | 0.0877 (16) | 0.0626 (15) | 0.0468 (12) | 0.0360 (12) | 0.0467 (12) | 0.0221 (10) |
C1 | 0.0656 (17) | 0.0579 (18) | 0.078 (2) | 0.0224 (13) | 0.0426 (16) | 0.0289 (14) |
C2 | 0.0675 (17) | 0.0420 (15) | 0.088 (2) | 0.0143 (12) | 0.0426 (16) | 0.0072 (13) |
C3 | 0.0616 (16) | 0.0471 (15) | 0.0563 (15) | 0.0085 (12) | 0.0273 (13) | 0.0009 (12) |
C4 | 0.0430 (12) | 0.0419 (13) | 0.0456 (13) | 0.0048 (10) | 0.0275 (10) | 0.0068 (10) |
C5 | 0.0728 (17) | 0.0574 (16) | 0.0491 (14) | 0.0208 (13) | 0.0327 (13) | 0.0100 (12) |
C6 | 0.0428 (12) | 0.0396 (12) | 0.0367 (11) | 0.0026 (9) | 0.0229 (10) | 0.0034 (9) |
C7 | 0.0505 (12) | 0.0425 (12) | 0.0359 (11) | 0.0087 (10) | 0.0256 (10) | 0.0030 (9) |
S—C6 | 1.743 (2) | C1—C2 | 1.366 (4) |
S—C7 | 1.736 (2) | C1—H1B | 0.9300 |
N1—C1 | 1.329 (4) | C2—C3 | 1.385 (4) |
N1—C5 | 1.335 (3) | C2—H2B | 0.9300 |
N2—N3 | 1.384 (2) | C3—C4 | 1.379 (3) |
N2—C6 | 1.289 (3) | C3—H3B | 0.9300 |
N3—C7 | 1.306 (3) | C4—C5 | 1.383 (3) |
N4—C7 | 1.342 (3) | C4—C6 | 1.474 (3) |
N4—H4A | 0.8600 | C5—H5A | 0.9300 |
N4—H4B | 0.8600 | ||
C7—S—C6 | 86.65 (10) | C4—C3—H3B | 120.5 |
C1—N1—C5 | 116.8 (3) | C2—C3—H3B | 120.5 |
C6—N2—N3 | 113.79 (18) | C3—C4—C5 | 117.5 (2) |
C7—N3—N2 | 111.67 (17) | C3—C4—C6 | 122.5 (2) |
C7—N4—H4A | 120.0 | C5—C4—C6 | 120.0 (2) |
C7—N4—H4B | 120.0 | N1—C5—C4 | 124.1 (3) |
H4A—N4—H4B | 120.0 | N1—C5—H5A | 117.9 |
N1—C1—C2 | 123.7 (2) | C4—C5—H5A | 117.9 |
N1—C1—H1B | 118.2 | N2—C6—C4 | 124.3 (2) |
C2—C1—H1B | 118.2 | N2—C6—S | 113.59 (17) |
C1—C2—C3 | 118.8 (3) | C4—C6—S | 122.13 (16) |
C1—C2—H2B | 120.6 | N3—C7—N4 | 123.6 (2) |
C3—C2—H2B | 120.6 | N3—C7—S | 114.30 (16) |
C4—C3—C2 | 119.0 (3) | N4—C7—S | 122.07 (16) |
C5—N1—C1—C2 | 0.9 (5) | C3—C4—C6—N2 | 147.8 (2) |
N1—C1—C2—C3 | −0.9 (5) | C5—C4—C6—N2 | −32.8 (3) |
C6—N2—N3—C7 | 0.0 (3) | C3—C4—C6—S | −32.0 (3) |
C1—C2—C3—C4 | 0.2 (4) | C5—C4—C6—S | 147.4 (2) |
C2—C3—C4—C5 | 0.5 (4) | C7—S—C6—N2 | −0.09 (18) |
C2—C3—C4—C6 | 179.9 (2) | C7—S—C6—C4 | 179.73 (19) |
C1—N1—C5—C4 | −0.1 (5) | N2—N3—C7—N4 | 179.7 (2) |
C3—C4—C5—N1 | −0.6 (4) | N2—N3—C7—S | −0.1 (3) |
C6—C4—C5—N1 | 180.0 (3) | C6—S—C7—N3 | 0.10 (19) |
N3—N2—C6—C4 | −179.8 (2) | C6—S—C7—N4 | −179.7 (2) |
N3—N2—C6—S | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N3i | 0.86 | 2.13 | 2.959 (3) | 163 |
N4—H4B···N2ii | 0.86 | 2.16 | 3.006 (3) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H6N4S |
Mr | 178.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 11.066 (2), 7.2380 (14), 11.271 (2) |
β (°) | 116.79 (3) |
V (Å3) | 805.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.10 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.966, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1542, 1464, 1220 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.132, 1.01 |
No. of reflections | 1464 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.34 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···N3i | 0.86 | 2.13 | 2.959 (3) | 163 |
N4—H4B···N2ii | 0.86 | 2.16 | 3.006 (3) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
Wang, Y., Wan, R., Han, F., Wang, P. & Wang, B. (2009). Acta Cryst. E65, o1099. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and are in accordance with the corresponding values in 5-(4-pyridyl)-1,3,4-thiadiazol-2-amine (Wang et al., 2009). Rings A (N1/C1–C5) and B (S/N2/N3/C6/C7) are, of course, planar, and they are oriented at a dihedral angle of 32.42 (14)°.
In the crystal structure, intermolecular N—H···N interactions (Table 1) link the molecules into a three-dimensional network forming R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the thiadiazole rings, Cg2—Cg2i, [symmetry code: (i) 1 - x, -y, 1 - z, where Cg2 is centroid of the ring B (S/N2/N3/C6/C7)] may further stabilize the structure, with centroid–centroid distance of 3.666 (1) Å.