organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Pyrid­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 21 May 2009; accepted 22 May 2009; online 29 May 2009)

The title compound, C7H6N4S, was synthesized by reacting pyridine-3-carboxylic acid and thio­semicarbazide. The dihedral angle between the planes of the thia­diazole and pyridine rings is 32.42 (14)°. In the crystal structure, inter­molecular N—H⋯N inter­actions link the mol­ecules into a three-dimensional network, forming R22(8) ring motifs. ππ contacts between thia­diazole rings [centroid–centroid distance = 3.666 (1) Å] may further stabilize the structure.

Related literature

For general background, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For a related structure, see: Wang et al. (2009[Wang, Y., Wan, R., Han, F., Wang, P. & Wang, B. (2009). Acta Cryst. E65, o1099.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N4S

  • Mr = 178.22

  • Monoclinic, P 21 /c

  • a = 11.066 (2) Å

  • b = 7.2380 (14) Å

  • c = 11.271 (2) Å

  • β = 116.79 (3)°

  • V = 805.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 294 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.966, Tmax = 0.983

  • 1542 measured reflections

  • 1464 independent reflections

  • 1220 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.132

  • S = 1.01

  • 1464 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.86 2.13 2.959 (3) 163
N4—H4B⋯N2ii 0.86 2.16 3.006 (3) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and are in accordance with the corresponding values in 5-(4-pyridyl)-1,3,4-thiadiazol-2-amine (Wang et al., 2009). Rings A (N1/C1–C5) and B (S/N2/N3/C6/C7) are, of course, planar, and they are oriented at a dihedral angle of 32.42 (14)°.

In the crystal structure, intermolecular N—H···N interactions (Table 1) link the molecules into a three-dimensional network forming R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the thiadiazole rings, Cg2—Cg2i, [symmetry code: (i) 1 - x, -y, 1 - z, where Cg2 is centroid of the ring B (S/N2/N3/C6/C7)] may further stabilize the structure, with centroid–centroid distance of 3.666 (1) Å.

Related literature top

For general background, see: Nakagawa et al. (1996); Wang et al. (1999). For a related structure, see: Wang et al. (2009). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, 3-pyridine carboxylic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filted. Crystals of suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-(3-Pyridyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C7H6N4SF(000) = 368
Mr = 178.22Dx = 1.469 Mg m3
Monoclinic, P21/cMelting point: 550 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.066 (2) ÅCell parameters from 25 reflections
b = 7.2380 (14) Åθ = 9–12°
c = 11.271 (2) ŵ = 0.35 mm1
β = 116.79 (3)°T = 294 K
V = 805.9 (3) Å3Block, colourless
Z = 40.10 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.966, Tmax = 0.983l = 1312
1542 measured reflections3 standard reflections every 120 min
1464 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
1464 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C7H6N4SV = 805.9 (3) Å3
Mr = 178.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.066 (2) ŵ = 0.35 mm1
b = 7.2380 (14) ÅT = 294 K
c = 11.271 (2) Å0.10 × 0.05 × 0.05 mm
β = 116.79 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1220 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.966, Tmax = 0.9833 standard reflections every 120 min
1542 measured reflections intensity decay: 1%
1464 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
1464 reflectionsΔρmin = 0.34 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.69244 (6)0.09005 (8)0.45516 (5)0.0434 (3)
N10.9145 (3)0.2801 (4)0.8931 (2)0.0717 (7)
N20.63999 (19)0.1376 (3)0.65128 (17)0.0421 (5)
N30.57605 (19)0.2824 (3)0.56552 (18)0.0441 (5)
N40.5428 (3)0.3989 (3)0.3599 (2)0.0595 (7)
H4A0.49440.48900.36450.071*
H4B0.55800.38800.29180.071*
C10.9215 (3)0.4300 (4)0.8284 (3)0.0634 (8)
H1B0.96920.53150.87820.076*
C20.8626 (3)0.4435 (4)0.6931 (3)0.0628 (8)
H2B0.87140.55090.65230.075*
C30.7896 (3)0.2946 (3)0.6177 (3)0.0547 (7)
H3B0.74830.30040.52530.066*
C40.7792 (2)0.1374 (3)0.6817 (2)0.0407 (5)
C50.8440 (3)0.1375 (4)0.8191 (3)0.0578 (7)
H5A0.83800.03150.86280.069*
C60.7037 (2)0.0273 (3)0.6091 (2)0.0378 (5)
C70.5946 (2)0.2753 (3)0.4591 (2)0.0407 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0559 (4)0.0461 (4)0.0383 (4)0.0125 (2)0.0303 (3)0.0041 (2)
N10.0875 (17)0.0765 (17)0.0569 (14)0.0339 (14)0.0375 (13)0.0256 (13)
N20.0544 (11)0.0423 (11)0.0395 (10)0.0099 (9)0.0298 (9)0.0079 (8)
N30.0609 (12)0.0421 (11)0.0427 (11)0.0143 (9)0.0353 (9)0.0107 (8)
N40.0877 (16)0.0626 (15)0.0468 (12)0.0360 (12)0.0467 (12)0.0221 (10)
C10.0656 (17)0.0579 (18)0.078 (2)0.0224 (13)0.0426 (16)0.0289 (14)
C20.0675 (17)0.0420 (15)0.088 (2)0.0143 (12)0.0426 (16)0.0072 (13)
C30.0616 (16)0.0471 (15)0.0563 (15)0.0085 (12)0.0273 (13)0.0009 (12)
C40.0430 (12)0.0419 (13)0.0456 (13)0.0048 (10)0.0275 (10)0.0068 (10)
C50.0728 (17)0.0574 (16)0.0491 (14)0.0208 (13)0.0327 (13)0.0100 (12)
C60.0428 (12)0.0396 (12)0.0367 (11)0.0026 (9)0.0229 (10)0.0034 (9)
C70.0505 (12)0.0425 (12)0.0359 (11)0.0087 (10)0.0256 (10)0.0030 (9)
Geometric parameters (Å, º) top
S—C61.743 (2)C1—C21.366 (4)
S—C71.736 (2)C1—H1B0.9300
N1—C11.329 (4)C2—C31.385 (4)
N1—C51.335 (3)C2—H2B0.9300
N2—N31.384 (2)C3—C41.379 (3)
N2—C61.289 (3)C3—H3B0.9300
N3—C71.306 (3)C4—C51.383 (3)
N4—C71.342 (3)C4—C61.474 (3)
N4—H4A0.8600C5—H5A0.9300
N4—H4B0.8600
C7—S—C686.65 (10)C4—C3—H3B120.5
C1—N1—C5116.8 (3)C2—C3—H3B120.5
C6—N2—N3113.79 (18)C3—C4—C5117.5 (2)
C7—N3—N2111.67 (17)C3—C4—C6122.5 (2)
C7—N4—H4A120.0C5—C4—C6120.0 (2)
C7—N4—H4B120.0N1—C5—C4124.1 (3)
H4A—N4—H4B120.0N1—C5—H5A117.9
N1—C1—C2123.7 (2)C4—C5—H5A117.9
N1—C1—H1B118.2N2—C6—C4124.3 (2)
C2—C1—H1B118.2N2—C6—S113.59 (17)
C1—C2—C3118.8 (3)C4—C6—S122.13 (16)
C1—C2—H2B120.6N3—C7—N4123.6 (2)
C3—C2—H2B120.6N3—C7—S114.30 (16)
C4—C3—C2119.0 (3)N4—C7—S122.07 (16)
C5—N1—C1—C20.9 (5)C3—C4—C6—N2147.8 (2)
N1—C1—C2—C30.9 (5)C5—C4—C6—N232.8 (3)
C6—N2—N3—C70.0 (3)C3—C4—C6—S32.0 (3)
C1—C2—C3—C40.2 (4)C5—C4—C6—S147.4 (2)
C2—C3—C4—C50.5 (4)C7—S—C6—N20.09 (18)
C2—C3—C4—C6179.9 (2)C7—S—C6—C4179.73 (19)
C1—N1—C5—C40.1 (5)N2—N3—C7—N4179.7 (2)
C3—C4—C5—N10.6 (4)N2—N3—C7—S0.1 (3)
C6—C4—C5—N1180.0 (3)C6—S—C7—N30.10 (19)
N3—N2—C6—C4179.8 (2)C6—S—C7—N4179.7 (2)
N3—N2—C6—S0.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.862.132.959 (3)163
N4—H4B···N2ii0.862.163.006 (3)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6N4S
Mr178.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.066 (2), 7.2380 (14), 11.271 (2)
β (°) 116.79 (3)
V3)805.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
1542, 1464, 1220
Rint0.026
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.132, 1.01
No. of reflections1464
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.862.132.959 (3)163
N4—H4B···N2ii0.862.163.006 (3)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, Y., Wan, R., Han, F., Wang, P. & Wang, B. (2009). Acta Cryst. E65, o1099.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds