metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-hy­droxy­benzyl­­idene­amino)benzoato-κO]tetra­kis­­(methanol-κO)manganese(II)

aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: zhongmin0310@yahoo.com.cn

(Received 3 April 2009; accepted 5 May 2009; online 14 May 2009)

In the title mononuclear complex, [Mn(C14H10NO3)2(CH3OH)4], the MnII atom, lying on an inversion centre, exhibits a distorted octa­hedral geometry, defined by two O atoms from two monodentate ligands and four O atoms from four methanol mol­ecules. The crystal structure involves intra­molecular O—H⋯N and O—H⋯O and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For general background, see: Deeth (2008[Deeth, R. J. (2008). Inorg. Chem. 47, 6711-6725.]); Dubois et al. (2008[Dubois, L., Pécaut, J., Charlot, M.-F., Baffert, C., Collomb, M.-N., Deronzier, A. & Latour, J.-M. (2008). Chem. Eur. J. 14, 3013-3025.]); Huang et al. (2004[Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454-1464.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H10NO3)2(CH4O)4]

  • Mr = 663.57

  • Monoclinic, P 21 /c

  • a = 15.0341 (6) Å

  • b = 11.8819 (4) Å

  • c = 8.8178 (3) Å

  • β = 98.912 (4)°

  • V = 1556.14 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.6 × 0.6 × 0.3 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.823, Tmax = 1.000 (expected range = 0.711–0.865)

  • 10167 measured reflections

  • 3374 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 0.92

  • 3374 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O3 2.1275 (15)
Mn1—O5 2.1803 (13)
Mn1—O4 2.2023 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.85 1.83 2.619 (2) 153
O4—H4B⋯O2i 0.85 1.84 2.621 (2) 151
O5—H5B⋯O2 0.85 1.83 2.618 (2) 153
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

General molecular mechanics method for transition metal carboxylates and the multiple coordination modes in manganese(II) complexes have been reported recently (Deeth, 2008). Information on the structures of manganese(II) carboxylates continues to be collected, and at the same time new applications of such complexes are being discovered in magnetic properties, potential biological significance and ferrimagnet (Huang et al., 2004). The chemistry of organo-manganese(II) complexes of Schiff base has stemmed from the reported biocidal and catalytic activities of organo-manganese(II) compounds (Dubois et al., 2008). We report here a new monomeric manganese(II) compound, which contains the Schiff base ligand, N-(4-carboxyphenyl)salicylideneimine (Fig.1). The MnII atom has a distorted octahedral geometry (Table 1). There exist intra- and intermolecular hydrogen bonds in the crystal structure (Table 2). The intermolecular hydrogen bonds is used to form a two-dimensional supramolecular network (Fig. 2).

Related literature top

For general background, see: Deeth (2008); Dubois et al. (2008); Huang et al. (2004).

Experimental top

Manganese(II) acetate tetrahydrate (0.049 g, 0.2 mmol) was dissolved in 8 ml deionized water, giving a transparent solution (A), and N-(4-carboxyphenyl)salicylideneimine (0.097 g, 0.4 mmol) was dissolved in 10 ml me thanol (B). Then solution B was mixed with A and a suspension was obtained. Ammonia was added to the above mixture dropwise under magnetic stirring until pH value is neutral. The resulting suspension was transferred into a 25 ml Teflon-lined stainless-steel autoclave. The autoclave was sealed and maintained at 363 K for 12 h under autogenous pressure. After the reaction was completed, the resulting colourless block crystals were collected by filtration.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y, -z.]
[Figure 2] Fig. 2. Crystal packing of the title compound, showing hydrogen bonds (dashed lines).
Bis[4-(2-hydroxybenzylideneamino)benzoato-κO]tetrakis(methanol- κO)manganese(II) top
Crystal data top
[Mn(C14H10NO3)2(CH4O)4]F(000) = 694
Mr = 663.57Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3622 reflections
a = 15.0341 (6) Åθ = 2.7–29.8°
b = 11.8819 (4) ŵ = 0.49 mm1
c = 8.8178 (3) ÅT = 293 K
β = 98.912 (4)°Block, colorless
V = 1556.14 (10) Å30.6 × 0.6 × 0.3 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3374 independent reflections
Radiation source: Enhance (Mo) X-ray Source2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0855 pixels mm-1θmax = 27.0°, θmin = 2.7°
ω scansh = 1916
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1514
Tmin = 0.823, Tmax = 1.000l = 1111
10167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C14H10NO3)2(CH4O)4]V = 1556.14 (10) Å3
Mr = 663.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.0341 (6) ŵ = 0.49 mm1
b = 11.8819 (4) ÅT = 293 K
c = 8.8178 (3) Å0.6 × 0.6 × 0.3 mm
β = 98.912 (4)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2008 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 1.000Rint = 0.032
10167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.92Δρmax = 0.55 e Å3
3374 reflectionsΔρmin = 0.31 e Å3
205 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.00000.02171 (15)
O11.09324 (11)0.03911 (14)0.80222 (19)0.0404 (4)
H1A1.04200.02100.75330.048*
O20.57922 (10)0.20216 (13)0.26345 (18)0.0350 (4)
O30.60735 (10)0.03061 (12)0.18268 (17)0.0291 (4)
N10.94227 (12)0.06941 (15)0.7155 (2)0.0295 (5)
C11.11213 (15)0.0410 (2)0.9117 (3)0.0303 (6)
C21.19528 (16)0.0391 (2)1.0049 (3)0.0360 (6)
H2A1.23780.01510.99040.043*
C31.21437 (16)0.1187 (2)1.1196 (3)0.0397 (6)
H3A1.27040.11771.18150.048*
C41.15283 (15)0.1989 (2)1.1442 (3)0.0377 (6)
H4A1.16650.25111.22290.045*
C51.07051 (15)0.2014 (2)1.0510 (3)0.0332 (6)
H5A1.02880.25611.06750.040*
C61.04831 (14)0.12450 (18)0.9335 (2)0.0276 (5)
C70.96278 (15)0.13309 (19)0.8321 (3)0.0306 (5)
H7A0.92150.18700.85290.037*
C80.86185 (14)0.08573 (19)0.6112 (2)0.0269 (5)
C90.81878 (14)0.18938 (19)0.5844 (3)0.0312 (6)
H9A0.84120.25240.64020.037*
C100.74265 (14)0.19842 (19)0.4748 (3)0.0299 (5)
H10A0.71370.26750.45870.036*
C110.70884 (14)0.10594 (17)0.3887 (2)0.0225 (5)
C120.75350 (15)0.00380 (18)0.4146 (2)0.0259 (5)
H12A0.73220.05870.35670.031*
C130.82848 (15)0.00641 (19)0.5241 (2)0.0279 (5)
H13A0.85720.07570.54010.033*
C140.62646 (14)0.11436 (18)0.2699 (2)0.0234 (5)
O40.42496 (10)0.08439 (12)0.16313 (16)0.0306 (4)
H4B0.43710.15430.16660.037*
O50.43893 (10)0.15779 (11)0.05698 (16)0.0271 (4)
H5B0.47910.19380.11630.033*
C150.42208 (19)0.0436 (2)0.3134 (3)0.0436 (7)
H15A0.38620.09320.36500.065*
H15B0.48210.04030.36950.065*
H15C0.39600.03030.30750.065*
C160.39223 (16)0.23800 (19)0.0468 (3)0.0368 (6)
H16A0.37300.29990.01030.055*
H16B0.43160.26510.11450.055*
H16C0.34060.20290.10580.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0265 (3)0.0162 (2)0.0218 (3)0.0006 (2)0.00172 (19)0.0002 (2)
O10.0353 (10)0.0405 (10)0.0447 (11)0.0090 (8)0.0041 (8)0.0001 (9)
O20.0365 (9)0.0240 (9)0.0407 (10)0.0064 (7)0.0061 (8)0.0091 (8)
O30.0313 (9)0.0259 (9)0.0282 (9)0.0022 (7)0.0011 (7)0.0067 (7)
N10.0296 (11)0.0303 (11)0.0282 (10)0.0001 (9)0.0029 (9)0.0037 (9)
C10.0333 (14)0.0307 (13)0.0272 (12)0.0057 (10)0.0061 (11)0.0047 (11)
C20.0260 (13)0.0373 (14)0.0454 (15)0.0033 (11)0.0077 (12)0.0122 (12)
C30.0247 (14)0.0523 (17)0.0392 (15)0.0064 (12)0.0040 (11)0.0083 (13)
C40.0366 (14)0.0417 (15)0.0331 (14)0.0070 (12)0.0002 (12)0.0001 (12)
C50.0286 (13)0.0352 (14)0.0354 (14)0.0022 (11)0.0035 (11)0.0022 (12)
C60.0223 (12)0.0336 (13)0.0271 (12)0.0010 (10)0.0044 (10)0.0069 (11)
C70.0304 (13)0.0313 (13)0.0302 (13)0.0033 (10)0.0053 (11)0.0027 (11)
C80.0245 (12)0.0312 (13)0.0249 (12)0.0004 (10)0.0036 (10)0.0059 (10)
C90.0293 (13)0.0247 (13)0.0373 (14)0.0055 (10)0.0015 (11)0.0034 (11)
C100.0293 (13)0.0226 (12)0.0355 (14)0.0011 (10)0.0022 (11)0.0010 (11)
C110.0252 (12)0.0214 (11)0.0225 (11)0.0003 (9)0.0086 (10)0.0014 (9)
C120.0330 (12)0.0224 (11)0.0223 (11)0.0000 (11)0.0043 (9)0.0032 (10)
C130.0336 (13)0.0244 (12)0.0251 (11)0.0048 (11)0.0025 (10)0.0020 (11)
C140.0276 (12)0.0201 (12)0.0237 (11)0.0025 (10)0.0075 (10)0.0001 (10)
O40.0433 (10)0.0183 (8)0.0317 (9)0.0003 (7)0.0105 (7)0.0017 (7)
O50.0306 (8)0.0180 (8)0.0309 (9)0.0023 (7)0.0010 (7)0.0019 (7)
C150.070 (2)0.0313 (13)0.0339 (14)0.0014 (13)0.0207 (14)0.0006 (12)
C160.0417 (15)0.0264 (13)0.0415 (15)0.0077 (11)0.0041 (12)0.0096 (11)
Geometric parameters (Å, º) top
Mn1—O32.1275 (15)C7—H7A0.9300
Mn1—O3i2.1275 (15)C8—C131.386 (3)
Mn1—O5i2.1802 (13)C8—C91.394 (3)
Mn1—O52.1803 (13)C9—C101.383 (3)
Mn1—O42.2023 (14)C9—H9A0.9300
Mn1—O4i2.2023 (14)C10—C111.387 (3)
O1—C11.354 (3)C10—H10A0.9300
O1—H1A0.8500C11—C121.389 (3)
O2—C141.258 (2)C11—C141.496 (3)
O3—C141.263 (2)C12—C131.372 (3)
N1—C71.275 (3)C12—H12A0.9300
N1—C81.415 (3)C13—H13A0.9300
C1—C21.386 (3)O4—C151.418 (3)
C1—C61.414 (3)O4—H4B0.8500
C2—C31.382 (3)O5—C161.428 (2)
C2—H2A0.9300O5—H5B0.8500
C3—C41.369 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.376 (3)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.383 (3)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.452 (3)
O3—Mn1—O3i180.00 (10)C13—C8—C9119.0 (2)
O3—Mn1—O5i91.39 (5)C13—C8—N1116.85 (19)
O3i—Mn1—O5i88.61 (5)C9—C8—N1124.0 (2)
O3—Mn1—O588.61 (5)C10—C9—C8120.0 (2)
O3i—Mn1—O591.39 (5)C10—C9—H9A120.0
O5i—Mn1—O5180.00 (7)C8—C9—H9A120.0
O3—Mn1—O489.34 (6)C9—C10—C11121.0 (2)
O3i—Mn1—O490.66 (6)C9—C10—H10A119.5
O5i—Mn1—O492.04 (5)C11—C10—H10A119.5
O5—Mn1—O487.96 (5)C10—C11—C12118.4 (2)
O3—Mn1—O4i90.66 (6)C10—C11—C14121.60 (19)
O3i—Mn1—O4i89.34 (6)C12—C11—C14120.02 (19)
O5i—Mn1—O4i87.96 (5)C13—C12—C11121.1 (2)
O5—Mn1—O4i92.04 (5)C13—C12—H12A119.4
O4—Mn1—O4i180.00 (7)C11—C12—H12A119.4
C1—O1—H1A104.9C12—C13—C8120.5 (2)
C14—O3—Mn1132.05 (14)C12—C13—H13A119.7
C7—N1—C8121.23 (19)C8—C13—H13A119.7
O1—C1—C2118.8 (2)O2—C14—O3123.5 (2)
O1—C1—C6121.2 (2)O2—C14—C11119.14 (19)
C2—C1—C6120.0 (2)O3—C14—C11117.32 (18)
C3—C2—C1119.3 (2)C15—O4—Mn1123.20 (14)
C3—C2—H2A120.4C15—O4—H4B109.7
C1—C2—H2A120.4Mn1—O4—H4B109.9
C4—C3—C2121.6 (2)C16—O5—Mn1127.52 (13)
C4—C3—H3A119.2C16—O5—H5B106.9
C2—C3—H3A119.2Mn1—O5—H5B106.9
C3—C4—C5119.2 (2)O4—C15—H15A109.5
C3—C4—H4A120.4O4—C15—H15B109.5
C5—C4—H4A120.4H15A—C15—H15B109.5
C4—C5—C6121.6 (2)O4—C15—H15C109.5
C4—C5—H5A119.2H15A—C15—H15C109.5
C6—C5—H5A119.2H15B—C15—H15C109.5
C5—C6—C1118.4 (2)O5—C16—H16A109.5
C5—C6—C7120.2 (2)O5—C16—H16B109.5
C1—C6—C7121.4 (2)H16A—C16—H16B109.5
N1—C7—C6122.4 (2)O5—C16—H16C109.5
N1—C7—H7A118.8H16A—C16—H16C109.5
C6—C7—H7A118.8H16B—C16—H16C109.5
O5i—Mn1—O3—C14173.33 (18)C8—C9—C10—C111.0 (3)
O5—Mn1—O3—C146.67 (18)C9—C10—C11—C120.3 (3)
O4—Mn1—O3—C1494.64 (19)C9—C10—C11—C14179.90 (18)
O4i—Mn1—O3—C1485.36 (19)C10—C11—C12—C131.0 (3)
O1—C1—C2—C3178.3 (2)C14—C11—C12—C13179.17 (18)
C6—C1—C2—C30.6 (3)C11—C12—C13—C80.4 (3)
C1—C2—C3—C40.5 (4)C9—C8—C13—C120.8 (3)
C2—C3—C4—C51.0 (4)N1—C8—C13—C12176.55 (18)
C3—C4—C5—C60.2 (3)Mn1—O3—C14—O21.2 (3)
C4—C5—C6—C10.9 (3)Mn1—O3—C14—C11179.75 (12)
C4—C5—C6—C7176.7 (2)C10—C11—C14—O210.7 (3)
O1—C1—C6—C5177.6 (2)C12—C11—C14—O2169.4 (2)
C2—C1—C6—C51.3 (3)C10—C11—C14—O3170.6 (2)
O1—C1—C6—C74.8 (3)C12—C11—C14—O39.2 (3)
C2—C1—C6—C7176.2 (2)O3—Mn1—O4—C1541.12 (17)
C8—N1—C7—C6174.53 (19)O3i—Mn1—O4—C15138.88 (17)
C5—C6—C7—N1174.7 (2)O5i—Mn1—O4—C15132.49 (17)
C1—C6—C7—N12.8 (3)O5—Mn1—O4—C1547.51 (17)
C7—N1—C8—C13157.1 (2)O3—Mn1—O5—C16142.12 (16)
C7—N1—C8—C927.4 (3)O3i—Mn1—O5—C1637.88 (16)
C13—C8—C9—C101.5 (3)O4—Mn1—O5—C16128.49 (16)
N1—C8—C9—C10176.92 (19)O4i—Mn1—O5—C1651.51 (16)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.851.832.619 (2)153
O4—H4B···O2ii0.851.842.621 (2)151
O5—H5B···O20.851.832.618 (2)153
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C14H10NO3)2(CH4O)4]
Mr663.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0341 (6), 11.8819 (4), 8.8178 (3)
β (°) 98.912 (4)
V3)1556.14 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.6 × 0.6 × 0.3
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.823, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10167, 3374, 2008
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 0.92
No. of reflections3374
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O32.1275 (15)Mn1—O42.2023 (14)
Mn1—O52.1803 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.851.832.619 (2)153
O4—H4B···O2i0.851.842.621 (2)151
O5—H5B···O20.851.832.618 (2)153
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province of China (grant No. 0832100).

References

First citationDeeth, R. J. (2008). Inorg. Chem. 47, 6711–6725.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDubois, L., Pécaut, J., Charlot, M.-F., Baffert, C., Collomb, M.-N., Deronzier, A. & Latour, J.-M. (2008). Chem. Eur. J. 14, 3013–3025.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds