metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­bis­[2,4-di­amino-6-(2-pyrid­yl)-1,3,5-triazine-κ2N1,N6]zinc(II)

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 12 April 2009; accepted 29 April 2009; online 7 May 2009)

In the title mononuclear complex, [Zn(N3)2(C8H8N6)2], the ZnII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octa­hedral environment by four N atoms from two 2,4-diamino-6-(2-pyrid­yl)-1,3,5-triazine ligands and two N atoms from two end-on-coordinated azide ions. N—H⋯N hydrogen bonds between the ligand and azide ion link the complex mol­ecules into a three-dimensional network.

Related literature

For general background to organic–inorganic hybrid complexes with azide ligands, see: Carranza et al. (2008[Carranza, J., Julve, M. & Sletten, J. (2008). Inorg. Chim. Acta, 361, 2499-2507.]); Gadad et al. (2000[Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853-857.], 2004[Gadad, A. K., Noolvi, M. N. & Karpoormath, R. V. (2004). Bioorg. Med. Chem. 12, 5651-5659.]); Sun & Du (2005[Sun, B.-W. & Du, L. (2005). Acta Cryst. E61, m1099-m1100.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(N3)2(C8H8N6)2]

  • Mr = 525.86

  • Monoclinic, C 2/c

  • a = 18.288 (9) Å

  • b = 14.231 (7) Å

  • c = 9.144 (4) Å

  • β = 115.382 (5)°

  • V = 2150.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.588, Tmax = 0.841 (expected range = 0.636–0.909)

  • 9145 measured reflections

  • 2569 independent reflections

  • 1766 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.00

  • 2569 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N7 2.153 (3)
Zn1—N4 2.166 (2)
Zn1—N1 2.202 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N3i 0.86 2.19 3.042 (4) 175
N5—H5B⋯N7ii 0.86 2.31 3.060 (4) 147
N6—H6A⋯N9iii 0.86 2.34 3.025 (4) 137
N6—H6B⋯N7iv 0.86 2.10 2.939 (4) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+3]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, the design and synthesis of organic–inorganic hybrid compounds have drawn considerable attention. It was reported that 1H-1,3,5-triazole derivatives are a type of heterocyclic compounds with widely biological activity and outstanding capability. Meanwhile, a large number of complexes with azide ligands have been structurally and magnetically characterized (Carranza et al., 2008; Gadad et al., 2000, 2004; Sun & Du, 2005). Herein we report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the central ZnII atom is coordinated by six N atoms and assumes a distorted octahedral geometry. The Zn—N(amide) bond [2.166 (2) Å] and the Zn—N(azide) bond [2.153 (3) Å] are significantly shorter than the Zn—N(pyridine) bond [2.202 (2) Å] (Table 1). The pyridyl and triazine rings of the ligand are essentially planar. The C3 atom shows an evident deviation of 0.1264 (3)Å from the mean plane through all atoms of the ligand. The two ligands coordinated to the Zn atom form a dihedral angle of 74.80 (7)°. The molecules are connected into a three-dimensional network through N—H···N hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For general background to organic–inorganic hybrid complexes with azide ligands, see: Carranza et al. (2008); Gadad et al. (2000, 2004); Sun & Du (2005).

Experimental top

All chemicals used (reagent grade) were commercially available. The compound was synthesized by heating a mixture of Zn(CH3COO)2 (30 mg, 0.15 mmol), 2,4-diamino-6-pyridyl-l,3,5-triazine (17.6 mg, 0.1 mmol), CH3OH (5 ml) and H2O (15 ml) at 338 K in stirring condition. After a few minutes, an aqueous solution (2 ml) of sodium azide (6.5 mg, 0.1 mmol) was added to it and stirred for 30 min. Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature for three weeks.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 and C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+1, y, -z+3/2.]
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, showing hydrogen bonds (dashed lines).
Diazidobis[2,4-diamino-6-(2-pyridyl)-1,3,5-triazine-κ2N1,N6]zinc(II) top
Crystal data top
[Zn(N3)2(C8H8N6)2]F(000) = 1072
Mr = 525.86Dx = 1.624 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2266 reflections
a = 18.288 (9) Åθ = 1.9–28.6°
b = 14.231 (7) ŵ = 1.19 mm1
c = 9.144 (4) ÅT = 293 K
β = 115.382 (5)°Block, colourless
V = 2150.2 (18) Å30.20 × 0.18 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2569 independent reflections
Radiation source: fine-focus sealed tube1766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.588, Tmax = 0.841k = 1819
9145 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.3944P]
where P = (Fo2 + 2Fc2)/3
2569 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(N3)2(C8H8N6)2]V = 2150.2 (18) Å3
Mr = 525.86Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.288 (9) ŵ = 1.19 mm1
b = 14.231 (7) ÅT = 293 K
c = 9.144 (4) Å0.20 × 0.18 × 0.08 mm
β = 115.382 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1766 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.841Rint = 0.056
9145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2569 reflectionsΔρmin = 0.41 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.26762 (3)0.75000.03110 (17)
N10.57688 (14)0.16446 (17)0.7022 (3)0.0345 (6)
N20.72454 (13)0.16338 (16)1.1155 (3)0.0317 (6)
N30.67379 (15)0.25546 (16)1.2722 (3)0.0335 (6)
N40.59865 (13)0.24286 (16)0.9857 (3)0.0295 (6)
N50.79367 (15)0.17410 (19)1.3913 (3)0.0466 (7)
H5A0.79940.19401.48450.056*
H5B0.82970.13801.38420.056*
N60.55659 (15)0.33821 (19)1.1393 (3)0.0463 (7)
H6A0.56220.36081.23080.056*
H6B0.51570.35421.05170.056*
N70.56565 (14)0.37551 (19)0.6915 (3)0.0370 (6)
N80.58831 (15)0.43984 (19)0.7856 (3)0.0372 (6)
N90.61108 (18)0.5009 (2)0.8783 (4)0.0554 (8)
C10.5666 (2)0.1303 (2)0.5574 (4)0.0486 (9)
H1A0.51780.14210.46820.058*
C20.6245 (2)0.0791 (3)0.5352 (4)0.0536 (10)
H2A0.61490.05720.43270.064*
C30.6968 (2)0.0602 (2)0.6659 (4)0.0452 (8)
H3A0.73700.02570.65370.054*
C40.70815 (19)0.0941 (2)0.8161 (4)0.0375 (7)
H4A0.75600.08180.90710.045*
C50.64771 (17)0.14623 (19)0.8293 (3)0.0294 (6)
C60.65790 (16)0.18691 (19)0.9882 (3)0.0276 (6)
C70.72914 (17)0.1992 (2)1.2585 (3)0.0320 (7)
C80.61087 (17)0.2789 (2)1.1335 (3)0.0311 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0264 (3)0.0377 (3)0.0228 (3)0.0000.00450 (19)0.000
N10.0326 (13)0.0405 (15)0.0225 (13)0.0043 (11)0.0043 (11)0.0033 (10)
N20.0282 (13)0.0402 (15)0.0218 (13)0.0042 (10)0.0060 (10)0.0004 (10)
N30.0307 (13)0.0454 (16)0.0206 (12)0.0050 (11)0.0075 (10)0.0004 (10)
N40.0244 (12)0.0399 (15)0.0198 (12)0.0021 (10)0.0052 (10)0.0012 (10)
N50.0393 (15)0.070 (2)0.0202 (13)0.0202 (14)0.0027 (11)0.0020 (13)
N60.0393 (15)0.070 (2)0.0212 (13)0.0195 (14)0.0050 (12)0.0045 (12)
N70.0326 (14)0.0448 (16)0.0321 (14)0.0050 (12)0.0123 (11)0.0025 (12)
N80.0285 (14)0.0446 (17)0.0338 (15)0.0006 (12)0.0089 (11)0.0082 (13)
N90.061 (2)0.0489 (18)0.0433 (17)0.0132 (15)0.0104 (15)0.0083 (15)
C10.0435 (19)0.063 (2)0.0272 (17)0.0092 (17)0.0041 (15)0.0105 (16)
C20.059 (2)0.065 (2)0.0317 (18)0.0114 (19)0.0149 (17)0.0161 (16)
C30.051 (2)0.046 (2)0.042 (2)0.0076 (16)0.0222 (17)0.0088 (15)
C40.0379 (17)0.0382 (18)0.0335 (17)0.0037 (14)0.0125 (14)0.0006 (14)
C50.0316 (15)0.0283 (15)0.0265 (15)0.0020 (12)0.0108 (12)0.0022 (12)
C60.0265 (14)0.0303 (15)0.0244 (15)0.0014 (12)0.0094 (12)0.0012 (12)
C70.0291 (15)0.0372 (17)0.0246 (15)0.0008 (13)0.0066 (12)0.0047 (12)
C80.0284 (15)0.0384 (17)0.0231 (15)0.0021 (13)0.0078 (12)0.0020 (12)
Geometric parameters (Å, º) top
Zn1—N72.153 (3)N5—H5B0.8600
Zn1—N7i2.153 (3)N6—C81.322 (4)
Zn1—N4i2.166 (2)N6—H6A0.8600
Zn1—N42.166 (2)N6—H6B0.8600
Zn1—N12.202 (2)N7—N81.202 (4)
Zn1—N1i2.202 (2)N8—N91.159 (4)
N1—C51.343 (3)C1—C21.371 (5)
N1—C11.346 (4)C1—H1A0.9300
N2—C61.318 (3)C2—C31.377 (5)
N2—C71.372 (4)C2—H2A0.9300
N3—C71.338 (4)C3—C41.385 (4)
N3—C81.339 (4)C3—H3A0.9300
N4—C61.337 (3)C4—C51.379 (4)
N4—C81.371 (4)C4—H4A0.9300
N5—C71.329 (3)C5—C61.500 (4)
N5—H5A0.8600
N7—Zn1—N7i89.01 (14)H6A—N6—H6B120.0
N7—Zn1—N4i100.61 (9)N8—N7—Zn1115.1 (2)
N7i—Zn1—N4i92.75 (9)N9—N8—N7178.8 (3)
N7—Zn1—N492.75 (9)N1—C1—C2123.1 (3)
N7i—Zn1—N4100.61 (9)N1—C1—H1A118.4
N4i—Zn1—N4161.28 (13)C2—C1—H1A118.4
N7—Zn1—N187.41 (10)C1—C2—C3119.4 (3)
N7i—Zn1—N1174.96 (9)C1—C2—H2A120.3
N4i—Zn1—N191.39 (9)C3—C2—H2A120.3
N4—Zn1—N176.04 (9)C2—C3—C4118.2 (3)
N7—Zn1—N1i174.96 (9)C2—C3—H3A120.9
N7i—Zn1—N1i87.41 (10)C4—C3—H3A120.9
N4i—Zn1—N1i76.04 (9)C5—C4—C3119.3 (3)
N4—Zn1—N1i91.39 (9)C5—C4—H4A120.4
N1—Zn1—N1i96.38 (14)C3—C4—H4A120.4
C5—N1—C1117.3 (3)N1—C5—C4122.7 (3)
C5—N1—Zn1114.71 (18)N1—C5—C6115.9 (2)
C1—N1—Zn1127.1 (2)C4—C5—C6121.4 (3)
C6—N2—C7113.8 (2)N2—C6—N4127.0 (2)
C7—N3—C8115.9 (2)N2—C6—C5116.2 (2)
C6—N4—C8114.7 (2)N4—C6—C5116.8 (2)
C6—N4—Zn1115.90 (17)N5—C7—N3119.1 (3)
C8—N4—Zn1129.38 (19)N5—C7—N2116.0 (3)
C7—N5—H5A120.0N3—C7—N2124.9 (2)
C7—N5—H5B120.0N6—C8—N3118.4 (3)
H5A—N5—H5B120.0N6—C8—N4118.1 (2)
C8—N6—H6A120.0N3—C8—N4123.5 (3)
C8—N6—H6B120.0
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N3ii0.862.193.042 (4)175
N5—H5B···N7iii0.862.313.060 (4)147
N6—H6A···N9iv0.862.343.025 (4)137
N6—H6B···N7i0.862.102.939 (4)164
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+3/2, y+1/2, z+3; (iii) x+3/2, y+1/2, z+2; (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(N3)2(C8H8N6)2]
Mr525.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.288 (9), 14.231 (7), 9.144 (4)
β (°) 115.382 (5)
V3)2150.2 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.20 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.588, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
9145, 2569, 1766
Rint0.056
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.00
No. of reflections2569
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N72.153 (3)Zn1—N12.202 (2)
Zn1—N42.166 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N3i0.862.193.042 (4)174.6
N5—H5B···N7ii0.862.313.060 (4)146.5
N6—H6A···N9iii0.862.343.025 (4)137.1
N6—H6B···N7iv0.862.102.939 (4)164.3
Symmetry codes: (i) x+3/2, y+1/2, z+3; (ii) x+3/2, y+1/2, z+2; (iii) x, y+1, z+1/2; (iv) x+1, y, z+3/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 20761005) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Julve, M. & Sletten, J. (2008). Inorg. Chim. Acta, 361, 2499–2507.  Web of Science CSD CrossRef CAS Google Scholar
First citationGadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadad, A. K., Noolvi, M. N. & Karpoormath, R. V. (2004). Bioorg. Med. Chem. 12, 5651–5659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, B.-W. & Du, L. (2005). Acta Cryst. E61, m1099–m1100.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds