metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m676-m677

Poly[[aqua­bis­(μ3-isonicotinato-κ3O:O′:N)tris­­(μ2-isonicotinato-κ3O,O′:N)(nitrato-κO)bis­­(μ4-oxalato-κ6O1,O2:O2:O1′,O2′:O1′)dierbium(III)tetra­silver(I)] tetra­hydrate]

aCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and cSchool of Pharmacy, Guangdong Phamaceutical University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wenym75@126.com

(Received 15 April 2009; accepted 15 May 2009; online 23 May 2009)

In the title coordination polymer, {[Ag4Er2(C6H4NO2)5(C2O4)2(NO3)(H2O)]·4H2O}n, each ErIII atom is coordinated in a bicapped trigonal–prismatic coordination geometry by three O atoms from two isonicotinate (IN) ligands, four O atoms from two oxalate ligands and one O atom from either a nitrate ion or a water mol­ecule, both of which are half-occupied over the same site. One AgI atom has a Y-shaped geometry defined by one N atom from one IN ligand, one O atom from another IN ligand and one O atom from an oxalate ligand. The other AgI atom is coordinated by two IN ligands and one O atom from an oxalate ligand. One of the IN ligands is disordered over an inversion center and forms a bridge between two centrosymmetric AgI ions. Due to the disorder, this IN ligand coordinates to the Ag atom through either the pyridyl N or the carboxyl­ate O atoms. The IN and oxalate ligands link the Er and Ag atoms into a three-dimensional coordination framework. O—H⋯O and C—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background to coordination polymers and open framework materials, see: Barbour (2006[Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.]); Kepert (2006[Kepert, C. J. (2006). Chem. Commun. pp. 695-700.]); Kong et al. (2008[Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zhang et al. (2005[Zhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]). For background to isonicotinate complexes, see: Gheorghe et al. (2002[Gheorghe, R., Andruh, M., Muller, A. & Schmidtmann, M. (2002). Inorg. Chem. 41, 5314-5316.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag4Er2(C6H4NO2)5(C2O4)2(NO3)(H2O)]·4H2O

  • Mr = 1704.64

  • Triclinic, [P \overline 1]

  • a = 8.8561 (8) Å

  • b = 11.6428 (8) Å

  • c = 11.9597 (9) Å

  • α = 76.940 (1)°

  • β = 76.612 (1)°

  • γ = 76.035 (1)°

  • V = 1145.14 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.40 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.224, Tmax = 0.336

  • 5823 measured reflections

  • 4043 independent reflections

  • 3265 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.128

  • S = 1.06

  • 4043 reflections

  • 377 parameters

  • 95 restraints

  • H-atom parameters constrained

  • Δρmax = 1.57 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O7 2.254 (7)
Er1—O11 2.339 (8)
Er1—O2i 2.364 (7)
Er1—O4ii 2.369 (7)
Er1—O3 2.371 (6)
Er1—O1 2.382 (6)
Er1—O5iii 2.400 (6)
Er1—O6iii 2.423 (7)
Ag1—N1 2.231 (8)
Ag1—O8 2.263 (7)
Ag1—O1 2.417 (7)
Ag2—N5 2.122 (9)
Ag2—N2 2.199 (8)
Ag2—O9iv 2.521 (9)
Ag2—O10iv 2.492 (9)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z+1; (iv) -x, -y, -z+3.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14A⋯O9v 0.84 2.39 2.81 (3) 111
O14—H14B⋯O12vi 0.84 1.99 2.62 (3) 131
O16—H16A⋯O11vii 0.84 1.95 2.773 (12) 170
O16—H16B⋯O5viii 0.84 2.06 2.862 (12) 158
C6—H6⋯O2 0.93 2.53 3.371 (12) 151
C11—H11⋯O5iii 0.93 2.42 3.315 (8) 162
C12—H12⋯O14ix 0.93 2.56 3.441 (2) 158
Symmetry codes: (iii) x-1, y, z+1; (v) -x, -y, -z+2; (vi) -x+1, -y+1, -z+2; (vii) -x+2, -y+1, -z+2; (viii) -x+2, -y+1, -z+1; (ix) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of transition-lanthanide metal complexes have gained great recognition over the last decade because of their intriguing network topologies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kepert, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005). Isonicotinic acid is a multifunctional bridging ligand possessing of oxygen and nitrogen donors, which can thus be utilized to construct lanthanide-transition heterometallic complexes via the carboxyl oxygen atoms binding to lanthanides and nitrogen atoms bonding to transition metal ions such as AgI or CuI ions (Gheorghe et al., 2002). On the basis of above considerations, we chose nicotinic acid, mixed 4 d–4f metal ions and nitric acid as our building blocks. A new three-dimensional 4 d–4f coordination framework resulted from the hydrothermal treatment of Er2O3, AgNO3, oxalic acid, isonicotinic acid and nitric acid in water.

As depicted in Fig. 1, the asymmetric unit of the title compound contains one ErIII atom, two AgI atoms, two and a half IN ligands, two half oxalate anions, each on an inversion center, a half-occupied nitrate ion, a half-occupied coordinated water molecule and two uncoordinated water molecules. The ErIII atom is eight-coordinated in a bicapped trigonal prism coordination geometry by three O atoms from two IN ligands, four O atoms from two oxalate ligands and one O atom from either a nitrate ion or a water molecule, both of which are half-occupied over the same site (Table 1). The Ag1 atom is located in a Y-shaped configuration, defined by one N atom from one IN ligand, one O atom from another IN ligand and one O atom from one oxalate ligand. One of the IN ligands is disordered on an inversion center halfway between two Ag2 atoms and forms a bridge between the two Ag2 atoms. Due to the inversion disorder of this IN ligand, Ag2 is thus coordinated either to two N atoms or to a pyridyl N and two carboxylate O atoms from two IN ligands. In the crystal structure, a zigzag Er–oxalate–Ag chain is formed via the oxalate ligand. The chains are linked by pillared IN ligands to form a two-dimensional layer. The layers are further interconnected by Ag2(IN)3 units to form a three-dimensional coordination framework. The supramolecular structure are further stabilized by O—H···O and C—H···O hydrogen bonds involving the carboxylate groups, uncoordinated water molecules and disordered nitrate ions (Table 2; Fig. 2).

Related literature top

For general background to coordination polymers and open framework materials, see: Barbour (2006); Kepert (2006); Kong et al. (2008); Rao et al. (2004); Zhang et al. (2005). For background to isonicotinate complexes, see: Gheorghe et al. (2002).

Experimental top

A mixture of Er2O3 (0.192 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), isonicotinic acid (0.123 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), HNO3 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The pale-purple crystals obtained were washed with water and dried in air (yield 46% based on Er).

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.84 (1) and H···H = 1.35 (1) Å and with Uiso(H) = 1.5Ueq(O). The hightest peak is located 0.95 Å from Ag1 and the deepest hole is located 1.02 Å from Er1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the symmetry-related atoms to complete the Er coordination. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 2 - y, 2 - z; (iii) -1 + x, y, 1 + z; (iv) -x, -y, 3 - z.]
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are shown as dashed lines.
Poly[[aquabis(µ3-isonicotinato-κ3O:O':N)tris(µ2- isonicotinato-κ3O,O':N)(nitrato-κO)bis(µ4- oxalato-κ6O1,O2:O2:O1',O2': O1')dierbium(III)tetrasilver(I)] tetrahydrate] top
Crystal data top
[Ag4Er2(C6H4NO2)5(C2O4)2(NO3)(H2O)]·4H2OZ = 1
Mr = 1704.64F(000) = 808
Triclinic, P1Dx = 2.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8561 (8) ÅCell parameters from 2895 reflections
b = 11.6428 (8) Åθ = 2.4–27.9°
c = 11.9597 (9) ŵ = 5.40 mm1
α = 76.940 (1)°T = 296 K
β = 76.612 (1)°Block, colorless
γ = 76.035 (1)°0.30 × 0.25 × 0.21 mm
V = 1145.14 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4043 independent reflections
Radiation source: fine-focus sealed tube3265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.224, Tmax = 0.336k = 913
5823 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0536P)2 + 8.9026P]
where P = (Fo2 + 2Fc2)/3
4043 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 1.57 e Å3
95 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Ag4Er2(C6H4NO2)5(C2O4)2(NO3)(H2O)]·4H2Oγ = 76.035 (1)°
Mr = 1704.64V = 1145.14 (16) Å3
Triclinic, P1Z = 1
a = 8.8561 (8) ÅMo Kα radiation
b = 11.6428 (8) ŵ = 5.40 mm1
c = 11.9597 (9) ÅT = 296 K
α = 76.940 (1)°0.30 × 0.25 × 0.21 mm
β = 76.612 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4043 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3265 reflections with I > 2σ(I)
Tmin = 0.224, Tmax = 0.336Rint = 0.028
5823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05395 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 1.57 e Å3
4043 reflectionsΔρmin = 1.32 e Å3
377 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.75631 (5)0.84475 (4)1.13533 (4)0.02560 (13)
Ag11.03061 (11)0.73575 (8)0.83111 (8)0.0482 (3)
Ag20.34657 (11)0.20986 (8)1.22733 (8)0.0471 (2)
C11.0226 (11)0.9620 (8)0.9516 (8)0.027 (2)
C20.4797 (11)1.0449 (8)1.0425 (8)0.027 (2)
C31.5447 (11)0.8125 (8)0.3439 (9)0.029 (2)
C41.4291 (12)0.7896 (9)0.4583 (9)0.034 (3)
C51.4180 (12)0.8533 (8)0.5437 (9)0.034 (3)
H51.48450.90700.53380.041*
C61.3046 (12)0.8368 (8)0.6469 (9)0.035 (3)
H61.29310.88340.70310.042*
C71.2262 (14)0.6927 (10)0.5844 (10)0.046 (3)
H71.16160.63700.59690.056*
C81.3334 (13)0.7052 (10)0.4786 (10)0.044 (3)
H81.34070.65850.42320.053*
C90.8121 (10)0.5945 (8)1.0183 (9)0.029 (2)
C100.7093 (11)0.5019 (8)1.0682 (9)0.030 (2)
C110.5937 (12)0.5111 (9)1.1686 (10)0.042 (3)
H110.58390.57351.20820.050*
C120.4945 (13)0.4316 (9)1.2108 (10)0.040 (3)
H120.41670.44211.27690.048*
C130.6205 (13)0.3255 (10)1.0633 (10)0.043 (3)
H130.62910.26131.02640.052*
C140.7232 (13)0.4003 (9)1.0175 (10)0.039 (3)
H140.80230.38510.95320.046*
N11.2105 (10)0.7535 (8)0.6665 (8)0.038 (2)
N20.5076 (10)0.3372 (7)1.1577 (7)0.032 (2)
O10.9558 (8)0.8752 (6)0.9658 (6)0.0322 (17)
O21.1251 (8)0.9947 (6)0.8621 (6)0.0335 (17)
O30.5567 (8)1.0219 (5)1.1240 (6)0.0308 (16)
O40.3750 (8)1.1387 (6)1.0208 (6)0.0323 (16)
O51.5301 (8)0.7718 (6)0.2569 (6)0.0358 (18)
O61.6484 (8)0.8716 (7)0.3354 (6)0.0425 (19)
O70.8188 (8)0.6624 (6)1.0829 (6)0.0359 (18)
O80.8790 (8)0.5966 (6)0.9143 (6)0.0387 (18)
O110.9834 (9)0.7560 (8)1.2154 (8)0.057 (2)
H11A1.02810.78091.25720.085*0.50
H11B0.99460.67761.24340.085*0.50
N30.995 (4)0.651 (2)1.281 (2)0.085 (8)0.50
O120.860 (3)0.612 (2)1.318 (2)0.088 (7)0.50
O131.125 (3)0.595 (3)1.313 (3)0.133 (12)0.50
O140.209 (2)0.3871 (14)0.4571 (16)0.063 (5)0.50
H14A0.12510.36510.45750.095*0.50
H14B0.18680.43040.50880.095*0.50
O151.035 (3)0.5205 (17)1.2890 (18)0.078 (6)0.50
H15A1.01730.49891.23150.117*0.50
H15B1.12340.48011.30180.117*0.50
O160.7488 (11)0.1435 (8)0.8439 (9)0.080 (3)
H16A0.82230.18140.82840.120*
H16B0.67980.18310.80450.120*
N50.1892 (14)0.1154 (11)1.3561 (10)0.037 (4)0.50
C150.1322 (18)0.0286 (12)1.3241 (10)0.042 (5)0.50
H150.16310.01351.24820.051*0.50
C160.029 (2)0.0355 (13)1.4057 (13)0.049 (5)0.50
H160.00920.09351.38430.058*0.50
C170.0173 (19)0.0129 (14)1.5192 (12)0.035 (4)0.50
C180.0398 (18)0.0739 (14)1.5512 (9)0.039 (4)0.50
H180.00880.08901.62710.047*0.50
C190.1430 (16)0.1380 (11)1.4696 (11)0.042 (5)0.50
H190.18120.19601.49100.050*0.50
C200.136 (3)0.087 (2)1.607 (3)0.048 (5)0.50
O90.180 (3)0.162 (2)1.5730 (17)0.095 (7)0.50
O100.170 (2)0.0606 (18)1.7064 (16)0.070 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0229 (2)0.0283 (2)0.0268 (2)0.01183 (17)0.00013 (17)0.00509 (17)
Ag10.0470 (5)0.0600 (6)0.0354 (5)0.0242 (4)0.0112 (4)0.0090 (4)
Ag20.0507 (5)0.0476 (5)0.0445 (5)0.0299 (4)0.0100 (4)0.0089 (4)
C10.023 (5)0.032 (5)0.026 (5)0.009 (4)0.002 (4)0.005 (4)
C20.026 (5)0.027 (5)0.027 (5)0.008 (4)0.001 (4)0.004 (4)
C30.031 (5)0.021 (5)0.033 (6)0.006 (4)0.005 (4)0.003 (4)
C40.029 (5)0.036 (6)0.032 (6)0.004 (4)0.002 (4)0.007 (5)
C50.043 (6)0.023 (5)0.035 (6)0.019 (4)0.007 (5)0.002 (4)
C60.046 (6)0.021 (5)0.038 (6)0.010 (4)0.006 (5)0.004 (4)
C70.053 (7)0.046 (6)0.040 (7)0.032 (5)0.014 (5)0.010 (5)
C80.049 (6)0.042 (6)0.044 (7)0.027 (5)0.015 (5)0.019 (5)
C90.016 (4)0.026 (5)0.043 (6)0.009 (4)0.014 (4)0.012 (4)
C100.030 (5)0.028 (5)0.035 (6)0.013 (4)0.012 (4)0.003 (4)
C110.043 (6)0.031 (5)0.056 (7)0.021 (5)0.013 (5)0.027 (5)
C120.047 (6)0.037 (6)0.040 (6)0.022 (5)0.005 (5)0.015 (5)
C130.055 (7)0.035 (6)0.042 (7)0.026 (5)0.002 (6)0.007 (5)
C140.042 (6)0.035 (6)0.038 (6)0.017 (5)0.006 (5)0.010 (5)
N10.036 (5)0.043 (5)0.031 (5)0.016 (4)0.009 (4)0.004 (4)
N20.042 (5)0.021 (4)0.036 (5)0.016 (4)0.002 (4)0.001 (3)
O10.034 (4)0.025 (3)0.036 (4)0.018 (3)0.008 (3)0.005 (3)
O20.037 (4)0.036 (4)0.034 (4)0.023 (3)0.003 (3)0.013 (3)
O30.033 (4)0.024 (3)0.039 (4)0.002 (3)0.011 (3)0.012 (3)
O40.031 (4)0.037 (4)0.032 (4)0.001 (3)0.009 (3)0.016 (3)
O50.036 (4)0.032 (4)0.039 (4)0.017 (3)0.001 (3)0.004 (3)
O60.039 (4)0.058 (5)0.036 (4)0.034 (4)0.006 (3)0.006 (3)
O70.038 (4)0.022 (3)0.049 (5)0.014 (3)0.005 (3)0.004 (3)
O80.041 (4)0.035 (4)0.042 (5)0.020 (3)0.001 (4)0.004 (3)
O110.052 (5)0.055 (5)0.068 (6)0.011 (4)0.033 (4)0.001 (4)
N30.12 (2)0.081 (17)0.087 (18)0.060 (16)0.025 (17)0.036 (14)
O120.099 (15)0.086 (14)0.102 (17)0.043 (13)0.028 (13)0.030 (12)
O130.099 (19)0.12 (2)0.14 (2)0.004 (17)0.052 (18)0.058 (18)
O140.054 (10)0.040 (9)0.082 (13)0.013 (8)0.005 (10)0.015 (9)
O150.121 (17)0.054 (11)0.080 (14)0.036 (12)0.042 (13)0.010 (10)
O160.068 (6)0.064 (6)0.117 (9)0.029 (5)0.044 (6)0.010 (6)
N50.041 (10)0.028 (9)0.043 (8)0.021 (7)0.005 (8)0.003 (7)
C150.053 (12)0.037 (11)0.041 (10)0.017 (9)0.015 (8)0.000 (8)
C160.055 (12)0.039 (11)0.062 (9)0.029 (9)0.007 (9)0.014 (8)
C170.020 (8)0.029 (9)0.057 (8)0.009 (6)0.009 (7)0.003 (7)
C180.032 (10)0.043 (10)0.042 (9)0.019 (7)0.003 (8)0.007 (7)
C190.049 (12)0.029 (10)0.049 (10)0.025 (8)0.002 (10)0.007 (8)
C200.026 (10)0.029 (10)0.075 (10)0.006 (7)0.011 (9)0.018 (8)
O90.090 (13)0.125 (15)0.088 (14)0.089 (12)0.001 (13)0.001 (11)
O100.053 (11)0.068 (13)0.072 (10)0.016 (10)0.005 (10)0.011 (9)
Geometric parameters (Å, º) top
Er1—O72.254 (7)C10—C111.392 (14)
Er1—O112.339 (8)C10—C141.415 (15)
Er1—O2i2.364 (7)C11—C121.365 (14)
Er1—O4ii2.369 (7)C11—H110.9300
Er1—O32.371 (6)C12—N21.357 (13)
Er1—O12.382 (6)C12—H120.9300
Er1—O5iii2.400 (6)C13—N21.332 (13)
Er1—O6iii2.423 (7)C13—C141.350 (14)
Ag1—N12.231 (8)C13—H130.9300
Ag1—O82.263 (7)C14—H140.9300
Ag1—O12.417 (7)O2—Er1i2.364 (7)
Ag2—N52.122 (9)O4—Er1ii2.369 (7)
Ag2—N22.199 (8)O5—Er1v2.400 (6)
Ag2—O9iv2.521 (9)O6—Er1v2.423 (7)
Ag2—O10iv2.492 (9)O11—N31.28 (3)
C1—O11.251 (11)O11—H11A0.8385
C1—O21.283 (11)O11—H11B0.8880
C1—C1i1.536 (19)N3—O131.28 (4)
C2—O31.260 (12)N3—O121.32 (3)
C2—O41.270 (11)O14—H14A0.8385
C2—C2ii1.545 (19)O14—H14B0.8436
C3—O61.248 (12)O15—H15A0.8402
C3—O51.280 (12)O15—H15B0.8410
C3—C41.519 (13)O16—H16A0.8365
C3—Er1v2.762 (10)O16—H16B0.8405
C4—C51.365 (15)N5—C151.3900
C4—C81.394 (14)N5—C191.3900
C5—C61.407 (14)C15—C161.3900
C5—H50.9300C15—H150.9300
C6—N11.374 (13)C16—C171.3900
C6—H60.9300C16—H160.9300
C7—N11.299 (14)C17—C181.3900
C7—C81.396 (15)C17—C201.57 (3)
C7—H70.9300C18—C191.3900
C8—H80.9300C18—H180.9300
C9—O71.243 (12)C19—H190.9300
C9—O81.246 (12)C20—O91.22 (3)
C9—C101.509 (13)C20—O101.24 (3)
O7—Er1—O1178.4 (3)C14—C10—C9123.0 (9)
O7—Er1—O2i140.7 (2)C12—C11—C10122.1 (10)
O11—Er1—O2i74.3 (3)C12—C11—H11118.9
O7—Er1—O4ii73.3 (2)C10—C11—H11118.9
O11—Er1—O4ii146.0 (3)N2—C12—C11121.0 (10)
O2i—Er1—O4ii118.2 (2)N2—C12—H12119.5
O7—Er1—O3139.7 (2)C11—C12—H12119.5
O11—Er1—O3141.7 (3)N2—C13—C14124.5 (10)
O2i—Er1—O373.1 (2)N2—C13—H13117.7
O4ii—Er1—O369.5 (2)C14—C13—H13117.7
O7—Er1—O178.8 (2)C13—C14—C10119.4 (10)
O11—Er1—O179.9 (3)C13—C14—H14120.3
O2i—Er1—O169.1 (2)C10—C14—H14120.3
O4ii—Er1—O176.4 (2)C7—N1—C6117.5 (9)
O3—Er1—O1106.1 (2)C7—N1—Ag1123.2 (7)
O7—Er1—O5iii83.7 (2)C6—N1—Ag1119.2 (7)
O11—Er1—O5iii110.4 (3)C13—N2—C12117.6 (9)
O2i—Er1—O5iii132.3 (2)C13—N2—Ag2122.1 (7)
O4ii—Er1—O5iii85.0 (2)C12—N2—Ag2120.4 (7)
O3—Er1—O5iii78.5 (2)C1—O1—Er1118.2 (6)
O1—Er1—O5iii157.4 (2)C1—O1—Ag1121.9 (6)
O7—Er1—O6iii122.2 (2)Er1—O1—Ag1119.9 (3)
O11—Er1—O6iii81.4 (3)C1—O2—Er1i118.2 (6)
O2i—Er1—O6iii81.1 (2)C2—O3—Er1117.8 (6)
O4ii—Er1—O6iii130.0 (2)C2—O4—Er1ii118.2 (6)
O3—Er1—O6iii74.3 (2)C3—O5—Er1v92.1 (6)
O1—Er1—O6iii148.1 (2)C3—O6—Er1v91.9 (6)
O5iii—Er1—O6iii54.4 (2)C9—O7—Er1150.9 (6)
N1—Ag1—O8132.0 (3)C9—O8—Ag1118.1 (6)
N1—Ag1—O1124.5 (3)N3—O11—Er1120.6 (14)
O8—Ag1—O1103.6 (2)N3—O11—H11A91.9
N5—Ag2—N2156.4 (4)Er1—O11—H11A130.9
O1—C1—O2125.7 (9)Er1—O11—H11B115.6
O1—C1—C1i117.7 (10)H11A—O11—H11B103.8
O2—C1—C1i116.6 (10)O13—N3—O11121 (3)
O3—C2—O4125.6 (9)O13—N3—O12123 (3)
O3—C2—C2ii117.8 (10)O11—N3—O12115 (3)
O4—C2—C2ii116.5 (11)O13—N3—H11B120.8
O6—C3—O5121.5 (9)O12—N3—H11B110.8
O6—C3—C4120.3 (9)N3—O13—H15B100.2
O5—C3—C4118.2 (9)H14A—O14—H14B106.6
O6—C3—Er1v61.3 (5)H15A—O15—H15B106.7
O5—C3—Er1v60.3 (5)H16A—O16—H16B107.4
C4—C3—Er1v177.8 (7)C15—N5—C19120.0
C5—C4—C8118.8 (9)C15—N5—Ag2118.0 (7)
C5—C4—C3119.4 (9)C19—N5—Ag2122.0 (7)
C8—C4—C3121.8 (10)N5—C15—C16120.0
C4—C5—C6119.2 (10)N5—C15—H15120.0
C4—C5—H5120.4C16—C15—H15120.0
C6—C5—H5120.4C15—C16—C17120.0
N1—C6—C5121.6 (10)C15—C16—H16120.0
N1—C6—H6119.2C17—C16—H16120.0
C5—C6—H6119.2C18—C17—C16120.0
N1—C7—C8124.5 (10)C18—C17—C20122.1 (15)
N1—C7—H7117.8C16—C17—C20117.9 (15)
C8—C7—H7117.8C17—C18—C19120.0
C4—C8—C7118.2 (10)C17—C18—H18120.0
C4—C8—H8120.9C19—C18—H18120.0
C7—C8—H8120.9C18—C19—N5120.0
O7—C9—O8126.5 (9)C18—C19—H19120.0
O7—C9—C10117.7 (9)N5—C19—H19120.0
O8—C9—C10115.7 (9)O9—C20—O10128 (2)
C11—C10—C14115.3 (9)O9—C20—C17118 (2)
C11—C10—C9121.7 (9)O10—C20—C17113 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z+1; (iv) x, y, z+3; (v) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14A···O9vi0.842.392.81 (3)111
O14—H14B···O12vii0.841.992.62 (3)131
O16—H16A···O11viii0.841.952.773 (12)170
O16—H16B···O5ix0.842.062.862 (12)158
C6—H6···O20.932.533.371 (12)151
C11—H11···O5iii0.932.423.315 (8)162
C12—H12···O14x0.932.563.441 (2)158
Symmetry codes: (iii) x1, y, z+1; (vi) x, y, z+2; (vii) x+1, y+1, z+2; (viii) x+2, y+1, z+2; (ix) x+2, y+1, z+1; (x) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag4Er2(C6H4NO2)5(C2O4)2(NO3)(H2O)]·4H2O
Mr1704.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.8561 (8), 11.6428 (8), 11.9597 (9)
α, β, γ (°)76.940 (1), 76.612 (1), 76.035 (1)
V3)1145.14 (16)
Z1
Radiation typeMo Kα
µ (mm1)5.40
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.224, 0.336
No. of measured, independent and
observed [I > 2σ(I)] reflections
5823, 4043, 3265
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 1.06
No. of reflections4043
No. of parameters377
No. of restraints95
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.57, 1.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O72.254 (7)Ag1—N12.231 (8)
Er1—O112.339 (8)Ag1—O82.263 (7)
Er1—O2i2.364 (7)Ag1—O12.417 (7)
Er1—O4ii2.369 (7)Ag2—N52.122 (9)
Er1—O32.371 (6)Ag2—N22.199 (8)
Er1—O12.382 (6)Ag2—O9iv2.521 (9)
Er1—O5iii2.400 (6)Ag2—O10iv2.492 (9)
Er1—O6iii2.423 (7)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z+1; (iv) x, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14A···O9v0.842.392.81 (3)111
O14—H14B···O12vi0.841.992.62 (3)131
O16—H16A···O11vii0.841.952.773 (12)170
O16—H16B···O5viii0.842.062.862 (12)158
C6—H6···O20.932.533.371 (12)151
C11—H11···O5iii0.932.423.315 (8)162
C12—H12···O14ix0.932.563.441 (2)158
Symmetry codes: (iii) x1, y, z+1; (v) x, y, z+2; (vi) x+1, y+1, z+2; (vii) x+2, y+1, z+2; (viii) x+2, y+1, z+1; (ix) x, y, z+1.
 

Acknowledgements

The authors kindly acknowledge Guangdong Ocean University for supporting this work.

References

First citationBarbour, L. J. (2006). Chem. Commun. pp. 1163–1168.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGheorghe, R., Andruh, M., Muller, A. & Schmidtmann, M. (2002). Inorg. Chem. 41, 5314–5316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKepert, C. J. (2006). Chem. Commun. pp. 695–700.  Web of Science CrossRef Google Scholar
First citationKong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m676-m677
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds