metal-organic compounds
Bis(acetato-κ2O,O′)bis(3,5-dimethyl-1H-pyrazole-κN2)copper(II)
aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: ifritsky@univ.kiev.ua
In the title compound, [Cu(C2H3O2)2(C5H8N2)2], the CuII atom has a distorted tetragonal–bipyramidal geometry, with the equatorial plane formed by two N atoms belonging to two 3,5-dimethyl-1H-pyrazole ligands and two O atoms from two acetate anions. The second O atoms of the acetate groups provide elongated Cu—O axial contacts, so that the acetates appear to be coordinated in a pseudo-chelate fashion. The pyrazole ligands are situated in cis positions with respect to each other. In the molecules are linked through intermolecular N—H⋯O hydrogen bonds, forming a one-dimensional chain.
Related literature
For properties and applications of 1H-pyrazole and its 3,5-substituted derivatives, see: Fritsky et al. (1993, 1994a,b); Halcrow (2001); Jain et al. (2004); Krämer (1999); Krämer et al. (2002); Raptis et al. (1999); Seredyuk et al. (2007); Skopenko et al. (1990). For related compounds, see: Barooah et al. (2006); Deka et al. (2006); Karmakar et al. (2007); Porai-Koshits (1980); Pradeep et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809019400/hy2196sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019400/hy2196Isup2.hkl
The title complex was synthesized by a direct method at free access of air oxygen. The mixture of 3,5-dimethyl-1H-pyrazole (0.96 g, 0.01 mol), ammonium acetate (0.77 g, 0.01 mol) in dimethylsulfoxide solution (15 ml) was stirred with copper powder (0.64 g, 0.01 mol) at ambient temperature until dissolved. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation yielded green crystals of the title complex suitable for X-ray analysis in 5 d.
H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 0.08 Å2. H atoms bound to N atoms were located on a difference Fourier map and refined isotropically.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C2H3O2)2(C5H8N2)2] | Z = 2 |
Mr = 373.90 | F(000) = 390 |
Triclinic, P1 | Dx = 1.434 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2861 (11) Å | Cell parameters from 7882 reflections |
b = 10.1684 (12) Å | θ = 2.2–27.1° |
c = 10.3139 (13) Å | µ = 1.29 mm−1 |
α = 110.755 (9)° | T = 133 K |
β = 100.901 (10)° | Needle, blue |
γ = 99.383 (9)° | 0.50 × 0.08 × 0.07 mm |
V = 865.7 (2) Å3 |
Stoe IPDSII diffractometer | 3713 independent reflections |
Radiation source: fine-focus sealed tube | 3129 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.1°, θmin = 2.2° |
Absorption correction: numerical (X-RED; Stoe & Cie, 2002) | h = −11→11 |
Tmin = 0.790, Tmax = 0.935 | k = −12→12 |
7882 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3 |
3713 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
[Cu(C2H3O2)2(C5H8N2)2] | γ = 99.383 (9)° |
Mr = 373.90 | V = 865.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2861 (11) Å | Mo Kα radiation |
b = 10.1684 (12) Å | µ = 1.29 mm−1 |
c = 10.3139 (13) Å | T = 133 K |
α = 110.755 (9)° | 0.50 × 0.08 × 0.07 mm |
β = 100.901 (10)° |
Stoe IPDSII diffractometer | 3713 independent reflections |
Absorption correction: numerical (X-RED; Stoe & Cie, 2002) | 3129 reflections with I > 2σ(I) |
Tmin = 0.790, Tmax = 0.935 | Rint = 0.029 |
7882 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.29 e Å−3 |
3713 reflections | Δρmin = −0.66 e Å−3 |
222 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59542 (3) | 0.26364 (3) | 0.28774 (3) | 0.01892 (8) | |
N1 | 0.46111 (18) | 0.31000 (19) | 0.1448 (2) | 0.0219 (4) | |
N2 | 0.35711 (19) | 0.2059 (2) | 0.0274 (2) | 0.0236 (4) | |
N3 | 0.41420 (18) | 0.17191 (19) | 0.3311 (2) | 0.0206 (4) | |
N4 | 0.30556 (18) | 0.2416 (2) | 0.3681 (2) | 0.0208 (4) | |
O1 | 0.73397 (15) | 0.25272 (16) | 0.45427 (17) | 0.0241 (3) | |
O2 | 0.69120 (17) | 0.47040 (17) | 0.52556 (18) | 0.0290 (3) | |
O3 | 0.77354 (16) | 0.32001 (17) | 0.21787 (18) | 0.0274 (3) | |
O4 | 0.67255 (17) | 0.08587 (17) | 0.09809 (18) | 0.0313 (4) | |
C1 | 0.4435 (2) | 0.4379 (2) | 0.1444 (2) | 0.0236 (4) | |
C2 | 0.3264 (2) | 0.4129 (3) | 0.0235 (3) | 0.0281 (5) | |
H2A | 0.2906 | 0.4827 | −0.0025 | 0.080* | |
C3 | 0.2751 (2) | 0.2644 (3) | −0.0486 (2) | 0.0264 (5) | |
C4 | 0.5404 (3) | 0.5761 (2) | 0.2603 (3) | 0.0295 (5) | |
H4A | 0.4975 | 0.6013 | 0.3409 | 0.080* | |
H4B | 0.5460 | 0.6519 | 0.2251 | 0.080* | |
H4C | 0.6402 | 0.5645 | 0.2900 | 0.080* | |
C5 | 0.1575 (3) | 0.1717 (3) | −0.1863 (3) | 0.0361 (6) | |
H5A | 0.2058 | 0.1261 | −0.2587 | 0.080* | |
H5B | 0.1002 | 0.2310 | −0.2170 | 0.080* | |
H5C | 0.0909 | 0.0986 | −0.1719 | 0.080* | |
C6 | 0.3738 (2) | 0.0426 (2) | 0.3370 (2) | 0.0223 (4) | |
C7 | 0.2394 (2) | 0.0308 (2) | 0.3797 (3) | 0.0260 (5) | |
H7 | 0.1875 | −0.0481 | 0.3924 | 0.080* | |
C8 | 0.1996 (2) | 0.1597 (2) | 0.3991 (2) | 0.0226 (4) | |
C9 | 0.4646 (3) | −0.0668 (3) | 0.2981 (3) | 0.0331 (5) | |
H9A | 0.4376 | −0.1180 | 0.1954 | 0.080* | |
H9B | 0.4442 | −0.1345 | 0.3417 | 0.080* | |
H9C | 0.5705 | −0.0183 | 0.3320 | 0.080* | |
C10 | 0.0700 (2) | 0.2149 (3) | 0.4456 (3) | 0.0317 (5) | |
H10A | 0.1082 | 0.3080 | 0.5246 | 0.080* | |
H10B | 0.0138 | 0.1479 | 0.4753 | 0.080* | |
H10C | 0.0049 | 0.2240 | 0.3668 | 0.080* | |
C11 | 0.7570 (2) | 0.3795 (2) | 0.5494 (2) | 0.0232 (4) | |
C12 | 0.8678 (3) | 0.4198 (3) | 0.6921 (3) | 0.0344 (5) | |
H12A | 0.9637 | 0.4742 | 0.6944 | 0.080* | |
H12B | 0.8803 | 0.3331 | 0.7054 | 0.080* | |
H12C | 0.8303 | 0.4777 | 0.7678 | 0.080* | |
C13 | 0.7706 (2) | 0.1986 (3) | 0.1243 (2) | 0.0268 (5) | |
C14 | 0.8912 (3) | 0.1923 (3) | 0.0435 (3) | 0.0450 (7) | |
H14A | 0.9847 | 0.1944 | 0.1038 | 0.080* | |
H14B | 0.9053 | 0.2743 | 0.0174 | 0.080* | |
H14C | 0.8601 | 0.1042 | −0.0418 | 0.080* | |
H4 | 0.319 (3) | 0.334 (3) | 0.384 (3) | 0.023 (6)* | |
H2 | 0.351 (3) | 0.118 (3) | 0.003 (3) | 0.027 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01590 (12) | 0.01845 (13) | 0.02150 (14) | 0.00555 (9) | 0.00670 (9) | 0.00546 (10) |
N1 | 0.0212 (8) | 0.0212 (9) | 0.0221 (10) | 0.0048 (7) | 0.0071 (7) | 0.0068 (8) |
N2 | 0.0227 (8) | 0.0215 (10) | 0.0224 (10) | 0.0043 (7) | 0.0060 (7) | 0.0047 (8) |
N3 | 0.0179 (7) | 0.0201 (9) | 0.0239 (10) | 0.0087 (7) | 0.0071 (7) | 0.0064 (8) |
N4 | 0.0182 (8) | 0.0218 (9) | 0.0241 (10) | 0.0090 (7) | 0.0086 (7) | 0.0078 (8) |
O1 | 0.0202 (7) | 0.0217 (8) | 0.0275 (9) | 0.0083 (6) | 0.0053 (6) | 0.0057 (7) |
O2 | 0.0331 (8) | 0.0240 (8) | 0.0318 (9) | 0.0132 (7) | 0.0121 (7) | 0.0088 (7) |
O3 | 0.0225 (7) | 0.0264 (8) | 0.0282 (9) | 0.0029 (6) | 0.0101 (6) | 0.0046 (7) |
O4 | 0.0274 (8) | 0.0259 (8) | 0.0331 (10) | 0.0053 (7) | 0.0110 (7) | 0.0024 (7) |
C1 | 0.0259 (10) | 0.0257 (11) | 0.0233 (12) | 0.0093 (8) | 0.0126 (9) | 0.0102 (10) |
C2 | 0.0303 (11) | 0.0317 (12) | 0.0293 (13) | 0.0140 (9) | 0.0125 (10) | 0.0151 (11) |
C3 | 0.0215 (9) | 0.0365 (13) | 0.0242 (12) | 0.0094 (9) | 0.0096 (9) | 0.0126 (10) |
C4 | 0.0364 (11) | 0.0227 (11) | 0.0294 (13) | 0.0073 (9) | 0.0106 (10) | 0.0097 (10) |
C5 | 0.0264 (11) | 0.0475 (15) | 0.0279 (13) | 0.0065 (10) | 0.0030 (10) | 0.0109 (12) |
C6 | 0.0225 (9) | 0.0204 (10) | 0.0233 (11) | 0.0077 (8) | 0.0063 (8) | 0.0069 (9) |
C7 | 0.0208 (9) | 0.0273 (11) | 0.0302 (12) | 0.0035 (8) | 0.0076 (9) | 0.0123 (10) |
C8 | 0.0175 (9) | 0.0267 (11) | 0.0214 (11) | 0.0057 (8) | 0.0054 (8) | 0.0069 (9) |
C9 | 0.0336 (11) | 0.0251 (12) | 0.0473 (16) | 0.0153 (10) | 0.0167 (11) | 0.0155 (11) |
C10 | 0.0225 (10) | 0.0410 (14) | 0.0336 (13) | 0.0129 (10) | 0.0137 (10) | 0.0118 (12) |
C11 | 0.0185 (9) | 0.0244 (11) | 0.0256 (12) | 0.0059 (8) | 0.0086 (8) | 0.0073 (9) |
C12 | 0.0298 (11) | 0.0380 (14) | 0.0276 (13) | 0.0105 (10) | 0.0049 (10) | 0.0048 (11) |
C13 | 0.0203 (9) | 0.0308 (12) | 0.0238 (12) | 0.0061 (9) | 0.0048 (9) | 0.0053 (10) |
C14 | 0.0316 (12) | 0.0565 (18) | 0.0360 (15) | 0.0053 (12) | 0.0197 (11) | 0.0029 (14) |
Cu1—N1 | 1.9851 (18) | C4—H4B | 0.9600 |
Cu1—N3 | 1.9925 (16) | C4—H4C | 0.9600 |
Cu1—O1 | 1.9909 (15) | C5—H5A | 0.9600 |
Cu1—O2 | 2.4774 (18) | C5—H5B | 0.9600 |
Cu1—O3 | 2.0045 (14) | C5—H5C | 0.9600 |
Cu1—O4 | 2.4603 (16) | C6—C7 | 1.402 (3) |
N1—C1 | 1.338 (3) | C6—C9 | 1.492 (3) |
N1—N2 | 1.355 (3) | C7—C8 | 1.377 (3) |
N2—C3 | 1.342 (3) | C7—H7 | 0.9300 |
N2—H2 | 0.82 (3) | C8—C10 | 1.497 (3) |
N3—C6 | 1.333 (3) | C9—H9A | 0.9600 |
N3—N4 | 1.361 (2) | C9—H9B | 0.9600 |
N4—C8 | 1.343 (3) | C9—H9C | 0.9600 |
N4—H4 | 0.87 (3) | C10—H10A | 0.9600 |
O1—C11 | 1.266 (3) | C10—H10B | 0.9600 |
O2—C11 | 1.256 (2) | C10—H10C | 0.9600 |
O3—C13 | 1.262 (3) | C11—C12 | 1.502 (3) |
O4—C13 | 1.250 (3) | C12—H12A | 0.9600 |
C1—C2 | 1.405 (3) | C12—H12B | 0.9600 |
C1—C4 | 1.485 (3) | C12—H12C | 0.9600 |
C2—C3 | 1.377 (3) | C13—C14 | 1.513 (3) |
C2—H2A | 0.9300 | C14—H14A | 0.9600 |
C3—C5 | 1.492 (3) | C14—H14B | 0.9600 |
C4—H4A | 0.9600 | C14—H14C | 0.9600 |
N1—Cu1—O1 | 170.00 (7) | C3—C5—H5A | 109.5 |
N1—Cu1—N3 | 89.80 (7) | C3—C5—H5B | 109.5 |
O1—Cu1—N3 | 91.52 (7) | H5A—C5—H5B | 109.5 |
N1—Cu1—O3 | 90.43 (7) | C3—C5—H5C | 109.5 |
O1—Cu1—O3 | 90.04 (6) | H5A—C5—H5C | 109.5 |
N3—Cu1—O3 | 169.70 (7) | H5B—C5—H5C | 109.5 |
N1—Cu1—O4 | 91.91 (7) | N3—C6—C7 | 109.75 (17) |
O1—Cu1—O4 | 96.79 (6) | N3—C6—C9 | 121.28 (18) |
N3—Cu1—O4 | 111.84 (6) | C7—C6—C9 | 128.9 (2) |
O3—Cu1—O4 | 57.86 (6) | C8—C7—C6 | 106.03 (18) |
N1—Cu1—O2 | 112.23 (6) | C8—C7—H7 | 127.0 |
O1—Cu1—O2 | 57.78 (6) | C6—C7—H7 | 127.0 |
N3—Cu1—O2 | 95.42 (7) | N4—C8—C7 | 106.80 (17) |
O3—Cu1—O2 | 94.03 (6) | N4—C8—C10 | 121.04 (19) |
O4—Cu1—O2 | 143.81 (5) | C7—C8—C10 | 132.2 (2) |
C1—N1—N2 | 106.62 (17) | C6—C9—H9A | 109.5 |
C1—N1—Cu1 | 130.74 (16) | C6—C9—H9B | 109.5 |
N2—N1—Cu1 | 122.49 (13) | H9A—C9—H9B | 109.5 |
C3—N2—N1 | 111.34 (19) | C6—C9—H9C | 109.5 |
C3—N2—H2 | 125.2 (19) | H9A—C9—H9C | 109.5 |
N1—N2—H2 | 123.2 (18) | H9B—C9—H9C | 109.5 |
C6—N3—N4 | 106.06 (15) | C8—C10—H10A | 109.5 |
C6—N3—Cu1 | 131.10 (13) | C8—C10—H10B | 109.5 |
N4—N3—Cu1 | 122.80 (13) | H10A—C10—H10B | 109.5 |
C8—N4—N3 | 111.35 (17) | C8—C10—H10C | 109.5 |
C8—N4—H4 | 127.8 (15) | H10A—C10—H10C | 109.5 |
N3—N4—H4 | 119.9 (15) | H10B—C10—H10C | 109.5 |
C11—O1—Cu1 | 101.34 (13) | O2—C11—O1 | 121.5 (2) |
C11—O2—Cu1 | 79.30 (13) | O2—C11—C12 | 120.4 (2) |
C13—O3—Cu1 | 100.41 (13) | O1—C11—C12 | 118.11 (19) |
C13—O4—Cu1 | 79.78 (13) | C11—C12—H12A | 109.5 |
N1—C1—C2 | 109.0 (2) | C11—C12—H12B | 109.5 |
N1—C1—C4 | 120.58 (19) | H12A—C12—H12B | 109.5 |
C2—C1—C4 | 130.46 (19) | C11—C12—H12C | 109.5 |
C3—C2—C1 | 106.30 (19) | H12A—C12—H12C | 109.5 |
C3—C2—H2A | 126.8 | H12B—C12—H12C | 109.5 |
C1—C2—H2A | 126.8 | O4—C13—O3 | 121.95 (19) |
N2—C3—C2 | 106.8 (2) | O4—C13—C14 | 120.2 (2) |
N2—C3—C5 | 121.5 (2) | O3—C13—C14 | 117.8 (2) |
C2—C3—C5 | 131.7 (2) | C13—C14—H14A | 109.5 |
C1—C4—H4A | 109.5 | C13—C14—H14B | 109.5 |
C1—C4—H4B | 109.5 | H14A—C14—H14B | 109.5 |
H4A—C4—H4B | 109.5 | C13—C14—H14C | 109.5 |
C1—C4—H4C | 109.5 | H14A—C14—H14C | 109.5 |
H4A—C4—H4C | 109.5 | H14B—C14—H14C | 109.5 |
H4B—C4—H4C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4i | 0.82 (3) | 1.92 (3) | 2.726 (3) | 166 (3) |
N4—H4···O2ii | 0.87 (3) | 1.91 (3) | 2.732 (2) | 157 (2) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H3O2)2(C5H8N2)2] |
Mr | 373.90 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 133 |
a, b, c (Å) | 9.2861 (11), 10.1684 (12), 10.3139 (13) |
α, β, γ (°) | 110.755 (9), 100.901 (10), 99.383 (9) |
V (Å3) | 865.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.50 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Numerical (X-RED; Stoe & Cie, 2002) |
Tmin, Tmax | 0.790, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7882, 3713, 3129 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.071, 1.02 |
No. of reflections | 3713 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.66 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Cu1—N1 | 1.9851 (18) | Cu1—O2 | 2.4774 (18) |
Cu1—N3 | 1.9925 (16) | Cu1—O3 | 2.0045 (14) |
Cu1—O1 | 1.9909 (15) | Cu1—O4 | 2.4603 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4i | 0.82 (3) | 1.92 (3) | 2.726 (3) | 166 (3) |
N4—H4···O2ii | 0.87 (3) | 1.91 (3) | 2.732 (2) | 157 (2) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42-2008).
References
Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). Eur. J. Inorg. Chem. pp. 2942–2946. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Deka, K., Laskar, M. & Baruah, B. J. (2006). Polyhedron, 25, 2525–2529. Web of Science CSD CrossRef CAS Google Scholar
Fritsky, I. O., Lampeka, R. D., Kravtsov, V. Kh. & Simonov, Y. A. (1993). Acta Cryst. C49, 1041–1044. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994a). Russ. J. Inorg. Chem. (Engl. Transl.), 39, 771–776. Google Scholar
Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994b). Zh. Neorg. Chim. 39, 805–810. Google Scholar
Halcrow, M. A. (2001). Angew. Chem. Int. Ed. 40, 346–349. Web of Science CrossRef CAS Google Scholar
Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871. Web of Science CSD CrossRef PubMed Google Scholar
Karmakar, A., Bania, K., Baruah, A. M. & Baruah, B. J. (2007). Inorg. Chem. Commun. 10, 959–964. Web of Science CSD CrossRef CAS Google Scholar
Krämer, R. (1999). Coord. Chem. Rev. 182, 211–243. Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Google Scholar
Porai-Koshits, M. A. (1980). J. Struct. Chem. 21, 147–180. CrossRef Web of Science Google Scholar
Pradeep, P., Supriya, S., Zacharias, P. S. & Das, S. K. (2006). Polyhedron, 25, 3588–3592. Web of Science CSD CrossRef CAS Google Scholar
Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634. CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skopenko, V. V., Lampeka, R. D. & Fritsky, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128. CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry because of their marked tendency to form high nuclearity species exhibiting specific magnetic properties (Krämer et al., 2002; Seredyuk et al., 2007). Copper complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites in copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis et al., 1999). In addition, copper carboxylates are important in biology and also in basic inorganic chemistry (Halcrow, 2001; Jain et al., 2004). The carboxylates show a large variety of coordination modes, which can lead to the formation of different assemblies, including supramolecular coordination polymers or metal–organic frameworks (Fritsky et al., 1993, 1994a,b; Skopenko et al., 1990). A large number of copper(II) carboxylates with flexible connection are reported (Barooah et al., 2006; Pradeep et al., 2006). Total use of 1H-pyrazole derivatives and carboxylates can lead to the formation of mononuclear complexes with vacant donor atoms, which can be use as building blocks for the preparation of polynuclear complexes or coordination polymers.
The title compound is a mononuclear complex (Fig. 1), which consists of a CuII ion as the central atom possessing a Jahn–Teller distorted tetragonal–bipyramidal environment. The four equatorial positions are occupied by two N atoms belonging to two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules [Cu—N = 1.9851 (18) and 1.9925 (16) Å] and two O atoms from the acetate anions [Cu—O = 1.9909 (15) and 2.0045 (14) Å]. The other two O atoms of the acetate anions occupy the axial positions [Cu—O = 2.4603 (16) and 2.4774 (18) Å] (Table 1). Each sort of ligands (3,5-dimethyl-1H-pyrazole and carboxylate) in the coordination sphere of central CuII is cis-oriented with respect to each other. According to the carboxylate coordination criteria (Poray-Coshits, 1980), the acetate anions of the title compound coordinate in a pseudo-chelate mode, forming a four-membered chelate ring. The specific chelation of the above mentioned acetate anions, when one of the two bonds always resides in the equatorial position and second bond occupies the axial position of tetragonal–bipyramidal environment, was found in many CuII compounds (Deka et al., 2006; Karmakar et al., 2007). The Cu—O equatorial distances varying in the range of 1.970 and 1.974 Å are somewhat shorter than those in the title compound. The axial Cu—O bond lengths in the title compound are less than 2.685 Å (Karmakar et al., 2007), but longer than 2.281 Å reported by Deka et al. (2006). In addition, asymmetric chelation of the acetate anions shows up in inequivalence of the two C—O bonds. Thus, C—O distances adjacent to the elongated axial Cu—O bonds [C13—O4 = 1.250 (3) and C11—O2 = 1.256 (2) Å] are a bit shorter than those in the equatorial plane [C13—O3 = 1.262 (3) and C11—O1 = 1.266 (3) Å]. The values of the angles around the central atom deviate from ideal tetragonal–bipyramidal geometry.
In the crystal packing (Fig. 2), the complex molecules are connected through intermolecular N—H···O hydrogen bonds into a one-dimensional linear chain. The hydrogen bonds in the structure are of two types, with distances N2···O4 = 2.726 (3) and N4···O2 = 2.732 (2)Å (Table 2). Each couple of hydrogen bonds of one type takes part in forming the different ten-membered cycles. Due to this crystal packing, the shortest intra-chain Cu···Cu separations are 6.018 and 6.123 Å.