metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m691-m692

Bis(acetato-κ2O,O′)bis­­(3,5-di­methyl-1H-pyrazole-κN2)copper(II)

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: ifritsky@univ.kiev.ua

(Received 22 April 2009; accepted 21 May 2009; online 29 May 2009)

In the title compound, [Cu(C2H3O2)2(C5H8N2)2], the CuII atom has a distorted tetra­gonal–bipyramidal geometry, with the equatorial plane formed by two N atoms belonging to two 3,5-dimethyl-1H-pyrazole ligands and two O atoms from two acetate anions. The second O atoms of the acetate groups provide elongated Cu—O axial contacts, so that the acetates appear to be coordinated in a pseudo-chelate fashion. The pyrazole ligands are situated in cis positions with respect to each other. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming a one-dimensional chain.

Related literature

For properties and applications of 1H-pyrazole and its 3,5-substituted derivatives, see: Fritsky et al. (1993[Fritsky, I. O., Lampeka, R. D., Kravtsov, V. Kh. & Simonov, Y. A. (1993). Acta Cryst. C49, 1041-1044.], 1994a[Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994a). Russ. J. Inorg. Chem. (Engl. Transl.), 39, 771-776.],b[Fritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994b). Zh. Neorg. Chim. 39, 805-810.]); Halcrow (2001[Halcrow, M. A. (2001). Angew. Chem. Int. Ed. 40, 346-349.]); Jain et al. (2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862-871.]); Krämer (1999[Krämer, R. (1999). Coord. Chem. Rev. 182, 211-243.]); Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Raptis et al. (1999[Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632-1634.]); Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]); Skopenko et al. (1990[Skopenko, V. V., Lampeka, R. D. & Fritsky, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123-128.]). For related compounds, see: Barooah et al. (2006[Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). Eur. J. Inorg. Chem. pp. 2942-2946.]); Deka et al. (2006[Deka, K., Laskar, M. & Baruah, B. J. (2006). Polyhedron, 25, 2525-2529.]); Karmakar et al. (2007[Karmakar, A., Bania, K., Baruah, A. M. & Baruah, B. J. (2007). Inorg. Chem. Commun. 10, 959-964.]); Porai-Koshits (1980[Porai-Koshits, M. A. (1980). J. Struct. Chem. 21, 147-180.]); Pradeep et al. (2006[Pradeep, P., Supriya, S., Zacharias, P. S. & Das, S. K. (2006). Polyhedron, 25, 3588-3592.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)2(C5H8N2)2]

  • Mr = 373.90

  • Triclinic, [P \overline 1]

  • a = 9.2861 (11) Å

  • b = 10.1684 (12) Å

  • c = 10.3139 (13) Å

  • α = 110.755 (9)°

  • β = 100.901 (10)°

  • γ = 99.383 (9)°

  • V = 865.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 133 K

  • 0.50 × 0.08 × 0.07 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.790, Tmax = 0.935

  • 7882 measured reflections

  • 3713 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.071

  • S = 1.02

  • 3713 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9851 (18)
Cu1—N3 1.9925 (16)
Cu1—O1 1.9909 (15)
Cu1—O2 2.4774 (18)
Cu1—O3 2.0045 (14)
Cu1—O4 2.4603 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.82 (3) 1.92 (3) 2.726 (3) 166 (3)
N4—H4⋯O2ii 0.87 (3) 1.91 (3) 2.732 (2) 157 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry because of their marked tendency to form high nuclearity species exhibiting specific magnetic properties (Krämer et al., 2002; Seredyuk et al., 2007). Copper complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites in copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis et al., 1999). In addition, copper carboxylates are important in biology and also in basic inorganic chemistry (Halcrow, 2001; Jain et al., 2004). The carboxylates show a large variety of coordination modes, which can lead to the formation of different assemblies, including supramolecular coordination polymers or metal–organic frameworks (Fritsky et al., 1993, 1994a,b; Skopenko et al., 1990). A large number of copper(II) carboxylates with flexible connection are reported (Barooah et al., 2006; Pradeep et al., 2006). Total use of 1H-pyrazole derivatives and carboxylates can lead to the formation of mononuclear complexes with vacant donor atoms, which can be use as building blocks for the preparation of polynuclear complexes or coordination polymers.

The title compound is a mononuclear complex (Fig. 1), which consists of a CuII ion as the central atom possessing a Jahn–Teller distorted tetragonal–bipyramidal environment. The four equatorial positions are occupied by two N atoms belonging to two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules [Cu—N = 1.9851 (18) and 1.9925 (16) Å] and two O atoms from the acetate anions [Cu—O = 1.9909 (15) and 2.0045 (14) Å]. The other two O atoms of the acetate anions occupy the axial positions [Cu—O = 2.4603 (16) and 2.4774 (18) Å] (Table 1). Each sort of ligands (3,5-dimethyl-1H-pyrazole and carboxylate) in the coordination sphere of central CuII is cis-oriented with respect to each other. According to the carboxylate coordination criteria (Poray-Coshits, 1980), the acetate anions of the title compound coordinate in a pseudo-chelate mode, forming a four-membered chelate ring. The specific chelation of the above mentioned acetate anions, when one of the two bonds always resides in the equatorial position and second bond occupies the axial position of tetragonal–bipyramidal environment, was found in many CuII compounds (Deka et al., 2006; Karmakar et al., 2007). The Cu—O equatorial distances varying in the range of 1.970 and 1.974 Å are somewhat shorter than those in the title compound. The axial Cu—O bond lengths in the title compound are less than 2.685 Å (Karmakar et al., 2007), but longer than 2.281 Å reported by Deka et al. (2006). In addition, asymmetric chelation of the acetate anions shows up in inequivalence of the two C—O bonds. Thus, C—O distances adjacent to the elongated axial Cu—O bonds [C13—O4 = 1.250 (3) and C11—O2 = 1.256 (2) Å] are a bit shorter than those in the equatorial plane [C13—O3 = 1.262 (3) and C11—O1 = 1.266 (3) Å]. The values of the angles around the central atom deviate from ideal tetragonal–bipyramidal geometry.

In the crystal packing (Fig. 2), the complex molecules are connected through intermolecular N—H···O hydrogen bonds into a one-dimensional linear chain. The hydrogen bonds in the structure are of two types, with distances N2···O4 = 2.726 (3) and N4···O2 = 2.732 (2)Å (Table 2). Each couple of hydrogen bonds of one type takes part in forming the different ten-membered cycles. Due to this crystal packing, the shortest intra-chain Cu···Cu separations are 6.018 and 6.123 Å.

Related literature top

For properties and applications of 1H-pyrazole and its 3,5-substituted derivatives, see: Fritsky et al. (1993, 1994a,b); Halcrow (2001); Jain et al. (2004); Krämer (1999); Krämer et al. (2002); Raptis et al. (1999); Seredyuk et al. (2007); Skopenko et al. (1990). For related compounds, see: Barooah et al. (2006); Deka et al. (2006); Karmakar et al. (2007); Poray-Coshits (1980); Pradeep et al. (2006).

Experimental top

The title complex was synthesized by a direct method at free access of air oxygen. The mixture of 3,5-dimethyl-1H-pyrazole (0.96 g, 0.01 mol), ammonium acetate (0.77 g, 0.01 mol) in dimethylsulfoxide solution (15 ml) was stirred with copper powder (0.64 g, 0.01 mol) at ambient temperature until dissolved. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation yielded green crystals of the title complex suitable for X-ray analysis in 5 d.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 0.08 Å2. H atoms bound to N atoms were located on a difference Fourier map and refined isotropically.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed grey lines represent the elongated axial Cu—O bonds.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, showing the intermolecular hydrogen bonds as underlined dotted and shaded grey lines, which link the molecules into a one-dimensional chain. The dashed black lines represent the axial Cu—O bonds. [Symmetry codes: (i) 1 - x, -y, -z; (ii) 1 - x, 1 - y, 1 - z.]
Bis(acetato-κ2O,O')bis(3,5-dimethyl-1H-pyrazole- κN2)copper(II) top
Crystal data top
[Cu(C2H3O2)2(C5H8N2)2]Z = 2
Mr = 373.90F(000) = 390
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2861 (11) ÅCell parameters from 7882 reflections
b = 10.1684 (12) Åθ = 2.2–27.1°
c = 10.3139 (13) ŵ = 1.29 mm1
α = 110.755 (9)°T = 133 K
β = 100.901 (10)°Needle, blue
γ = 99.383 (9)°0.50 × 0.08 × 0.07 mm
V = 865.7 (2) Å3
Data collection top
Stoe IPDSII
diffractometer
3713 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: numerical
(X-RED; Stoe & Cie, 2002)
h = 1111
Tmin = 0.790, Tmax = 0.935k = 1212
7882 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C2H3O2)2(C5H8N2)2]γ = 99.383 (9)°
Mr = 373.90V = 865.7 (2) Å3
Triclinic, P1Z = 2
a = 9.2861 (11) ÅMo Kα radiation
b = 10.1684 (12) ŵ = 1.29 mm1
c = 10.3139 (13) ÅT = 133 K
α = 110.755 (9)°0.50 × 0.08 × 0.07 mm
β = 100.901 (10)°
Data collection top
Stoe IPDSII
diffractometer
3713 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2002)
3129 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.935Rint = 0.029
7882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
3713 reflectionsΔρmin = 0.66 e Å3
222 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59542 (3)0.26364 (3)0.28774 (3)0.01892 (8)
N10.46111 (18)0.31000 (19)0.1448 (2)0.0219 (4)
N20.35711 (19)0.2059 (2)0.0274 (2)0.0236 (4)
N30.41420 (18)0.17191 (19)0.3311 (2)0.0206 (4)
N40.30556 (18)0.2416 (2)0.3681 (2)0.0208 (4)
O10.73397 (15)0.25272 (16)0.45427 (17)0.0241 (3)
O20.69120 (17)0.47040 (17)0.52556 (18)0.0290 (3)
O30.77354 (16)0.32001 (17)0.21787 (18)0.0274 (3)
O40.67255 (17)0.08587 (17)0.09809 (18)0.0313 (4)
C10.4435 (2)0.4379 (2)0.1444 (2)0.0236 (4)
C20.3264 (2)0.4129 (3)0.0235 (3)0.0281 (5)
H2A0.29060.48270.00250.080*
C30.2751 (2)0.2644 (3)0.0486 (2)0.0264 (5)
C40.5404 (3)0.5761 (2)0.2603 (3)0.0295 (5)
H4A0.49750.60130.34090.080*
H4B0.54600.65190.22510.080*
H4C0.64020.56450.29000.080*
C50.1575 (3)0.1717 (3)0.1863 (3)0.0361 (6)
H5A0.20580.12610.25870.080*
H5B0.10020.23100.21700.080*
H5C0.09090.09860.17190.080*
C60.3738 (2)0.0426 (2)0.3370 (2)0.0223 (4)
C70.2394 (2)0.0308 (2)0.3797 (3)0.0260 (5)
H70.18750.04810.39240.080*
C80.1996 (2)0.1597 (2)0.3991 (2)0.0226 (4)
C90.4646 (3)0.0668 (3)0.2981 (3)0.0331 (5)
H9A0.43760.11800.19540.080*
H9B0.44420.13450.34170.080*
H9C0.57050.01830.33200.080*
C100.0700 (2)0.2149 (3)0.4456 (3)0.0317 (5)
H10A0.10820.30800.52460.080*
H10B0.01380.14790.47530.080*
H10C0.00490.22400.36680.080*
C110.7570 (2)0.3795 (2)0.5494 (2)0.0232 (4)
C120.8678 (3)0.4198 (3)0.6921 (3)0.0344 (5)
H12A0.96370.47420.69440.080*
H12B0.88030.33310.70540.080*
H12C0.83030.47770.76780.080*
C130.7706 (2)0.1986 (3)0.1243 (2)0.0268 (5)
C140.8912 (3)0.1923 (3)0.0435 (3)0.0450 (7)
H14A0.98470.19440.10380.080*
H14B0.90530.27430.01740.080*
H14C0.86010.10420.04180.080*
H40.319 (3)0.334 (3)0.384 (3)0.023 (6)*
H20.351 (3)0.118 (3)0.003 (3)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01590 (12)0.01845 (13)0.02150 (14)0.00555 (9)0.00670 (9)0.00546 (10)
N10.0212 (8)0.0212 (9)0.0221 (10)0.0048 (7)0.0071 (7)0.0068 (8)
N20.0227 (8)0.0215 (10)0.0224 (10)0.0043 (7)0.0060 (7)0.0047 (8)
N30.0179 (7)0.0201 (9)0.0239 (10)0.0087 (7)0.0071 (7)0.0064 (8)
N40.0182 (8)0.0218 (9)0.0241 (10)0.0090 (7)0.0086 (7)0.0078 (8)
O10.0202 (7)0.0217 (8)0.0275 (9)0.0083 (6)0.0053 (6)0.0057 (7)
O20.0331 (8)0.0240 (8)0.0318 (9)0.0132 (7)0.0121 (7)0.0088 (7)
O30.0225 (7)0.0264 (8)0.0282 (9)0.0029 (6)0.0101 (6)0.0046 (7)
O40.0274 (8)0.0259 (8)0.0331 (10)0.0053 (7)0.0110 (7)0.0024 (7)
C10.0259 (10)0.0257 (11)0.0233 (12)0.0093 (8)0.0126 (9)0.0102 (10)
C20.0303 (11)0.0317 (12)0.0293 (13)0.0140 (9)0.0125 (10)0.0151 (11)
C30.0215 (9)0.0365 (13)0.0242 (12)0.0094 (9)0.0096 (9)0.0126 (10)
C40.0364 (11)0.0227 (11)0.0294 (13)0.0073 (9)0.0106 (10)0.0097 (10)
C50.0264 (11)0.0475 (15)0.0279 (13)0.0065 (10)0.0030 (10)0.0109 (12)
C60.0225 (9)0.0204 (10)0.0233 (11)0.0077 (8)0.0063 (8)0.0069 (9)
C70.0208 (9)0.0273 (11)0.0302 (12)0.0035 (8)0.0076 (9)0.0123 (10)
C80.0175 (9)0.0267 (11)0.0214 (11)0.0057 (8)0.0054 (8)0.0069 (9)
C90.0336 (11)0.0251 (12)0.0473 (16)0.0153 (10)0.0167 (11)0.0155 (11)
C100.0225 (10)0.0410 (14)0.0336 (13)0.0129 (10)0.0137 (10)0.0118 (12)
C110.0185 (9)0.0244 (11)0.0256 (12)0.0059 (8)0.0086 (8)0.0073 (9)
C120.0298 (11)0.0380 (14)0.0276 (13)0.0105 (10)0.0049 (10)0.0048 (11)
C130.0203 (9)0.0308 (12)0.0238 (12)0.0061 (9)0.0048 (9)0.0053 (10)
C140.0316 (12)0.0565 (18)0.0360 (15)0.0053 (12)0.0197 (11)0.0029 (14)
Geometric parameters (Å, º) top
Cu1—N11.9851 (18)C4—H4B0.9600
Cu1—N31.9925 (16)C4—H4C0.9600
Cu1—O11.9909 (15)C5—H5A0.9600
Cu1—O22.4774 (18)C5—H5B0.9600
Cu1—O32.0045 (14)C5—H5C0.9600
Cu1—O42.4603 (16)C6—C71.402 (3)
N1—C11.338 (3)C6—C91.492 (3)
N1—N21.355 (3)C7—C81.377 (3)
N2—C31.342 (3)C7—H70.9300
N2—H20.82 (3)C8—C101.497 (3)
N3—C61.333 (3)C9—H9A0.9600
N3—N41.361 (2)C9—H9B0.9600
N4—C81.343 (3)C9—H9C0.9600
N4—H40.87 (3)C10—H10A0.9600
O1—C111.266 (3)C10—H10B0.9600
O2—C111.256 (2)C10—H10C0.9600
O3—C131.262 (3)C11—C121.502 (3)
O4—C131.250 (3)C12—H12A0.9600
C1—C21.405 (3)C12—H12B0.9600
C1—C41.485 (3)C12—H12C0.9600
C2—C31.377 (3)C13—C141.513 (3)
C2—H2A0.9300C14—H14A0.9600
C3—C51.492 (3)C14—H14B0.9600
C4—H4A0.9600C14—H14C0.9600
N1—Cu1—O1170.00 (7)C3—C5—H5A109.5
N1—Cu1—N389.80 (7)C3—C5—H5B109.5
O1—Cu1—N391.52 (7)H5A—C5—H5B109.5
N1—Cu1—O390.43 (7)C3—C5—H5C109.5
O1—Cu1—O390.04 (6)H5A—C5—H5C109.5
N3—Cu1—O3169.70 (7)H5B—C5—H5C109.5
N1—Cu1—O491.91 (7)N3—C6—C7109.75 (17)
O1—Cu1—O496.79 (6)N3—C6—C9121.28 (18)
N3—Cu1—O4111.84 (6)C7—C6—C9128.9 (2)
O3—Cu1—O457.86 (6)C8—C7—C6106.03 (18)
N1—Cu1—O2112.23 (6)C8—C7—H7127.0
O1—Cu1—O257.78 (6)C6—C7—H7127.0
N3—Cu1—O295.42 (7)N4—C8—C7106.80 (17)
O3—Cu1—O294.03 (6)N4—C8—C10121.04 (19)
O4—Cu1—O2143.81 (5)C7—C8—C10132.2 (2)
C1—N1—N2106.62 (17)C6—C9—H9A109.5
C1—N1—Cu1130.74 (16)C6—C9—H9B109.5
N2—N1—Cu1122.49 (13)H9A—C9—H9B109.5
C3—N2—N1111.34 (19)C6—C9—H9C109.5
C3—N2—H2125.2 (19)H9A—C9—H9C109.5
N1—N2—H2123.2 (18)H9B—C9—H9C109.5
C6—N3—N4106.06 (15)C8—C10—H10A109.5
C6—N3—Cu1131.10 (13)C8—C10—H10B109.5
N4—N3—Cu1122.80 (13)H10A—C10—H10B109.5
C8—N4—N3111.35 (17)C8—C10—H10C109.5
C8—N4—H4127.8 (15)H10A—C10—H10C109.5
N3—N4—H4119.9 (15)H10B—C10—H10C109.5
C11—O1—Cu1101.34 (13)O2—C11—O1121.5 (2)
C11—O2—Cu179.30 (13)O2—C11—C12120.4 (2)
C13—O3—Cu1100.41 (13)O1—C11—C12118.11 (19)
C13—O4—Cu179.78 (13)C11—C12—H12A109.5
N1—C1—C2109.0 (2)C11—C12—H12B109.5
N1—C1—C4120.58 (19)H12A—C12—H12B109.5
C2—C1—C4130.46 (19)C11—C12—H12C109.5
C3—C2—C1106.30 (19)H12A—C12—H12C109.5
C3—C2—H2A126.8H12B—C12—H12C109.5
C1—C2—H2A126.8O4—C13—O3121.95 (19)
N2—C3—C2106.8 (2)O4—C13—C14120.2 (2)
N2—C3—C5121.5 (2)O3—C13—C14117.8 (2)
C2—C3—C5131.7 (2)C13—C14—H14A109.5
C1—C4—H4A109.5C13—C14—H14B109.5
C1—C4—H4B109.5H14A—C14—H14B109.5
H4A—C4—H4B109.5C13—C14—H14C109.5
C1—C4—H4C109.5H14A—C14—H14C109.5
H4A—C4—H4C109.5H14B—C14—H14C109.5
H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.82 (3)1.92 (3)2.726 (3)166 (3)
N4—H4···O2ii0.87 (3)1.91 (3)2.732 (2)157 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C5H8N2)2]
Mr373.90
Crystal system, space groupTriclinic, P1
Temperature (K)133
a, b, c (Å)9.2861 (11), 10.1684 (12), 10.3139 (13)
α, β, γ (°)110.755 (9), 100.901 (10), 99.383 (9)
V3)865.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.50 × 0.08 × 0.07
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.790, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
7882, 3713, 3129
Rint0.029
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.071, 1.02
No. of reflections3713
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.66

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cu1—N11.9851 (18)Cu1—O22.4774 (18)
Cu1—N31.9925 (16)Cu1—O32.0045 (14)
Cu1—O11.9909 (15)Cu1—O42.4603 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.82 (3)1.92 (3)2.726 (3)166 (3)
N4—H4···O2ii0.87 (3)1.91 (3)2.732 (2)157 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42-2008).

References

First citationBarooah, N., Sarma, R. J. & Baruah, J. B. (2006). Eur. J. Inorg. Chem. pp. 2942–2946.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDeka, K., Laskar, M. & Baruah, B. J. (2006). Polyhedron, 25, 2525–2529.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Lampeka, R. D., Kravtsov, V. Kh. & Simonov, Y. A. (1993). Acta Cryst. C49, 1041–1044.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994a). Russ. J. Inorg. Chem. (Engl. Transl.), 39, 771–776.  Google Scholar
First citationFritsky, I. O., Lampeka, R. D., Skopenko, V. V., Simonov, Yu. A. & Dvorkin, A. A. (1994b). Zh. Neorg. Chim. 39, 805–810.  Google Scholar
First citationHalcrow, M. A. (2001). Angew. Chem. Int. Ed. 40, 346–349.  Web of Science CrossRef CAS Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKarmakar, A., Bania, K., Baruah, A. M. & Baruah, B. J. (2007). Inorg. Chem. Commun. 10, 959–964.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrämer, R. (1999). Coord. Chem. Rev. 182, 211–243.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationPorai-Koshits, M. A. (1980). J. Struct. Chem. 21, 147–180.  CrossRef Web of Science Google Scholar
First citationPradeep, P., Supriya, S., Zacharias, P. S. & Das, S. K. (2006). Polyhedron, 25, 3588–3592.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkopenko, V. V., Lampeka, R. D. & Fritsky, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.  CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m691-m692
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds