organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­phenyl-2-p-tolyl-1H-imidazol-3-ium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 14 April 2009; accepted 18 May 2009; online 23 May 2009)

In the cation of the title compound, C22H19N2+·NO3, the N atom in the 3-position of the imidazole is protonated. The three pendant aromatic rings are twisted from the plane of the imadazolium ring by dihedral angles of 38.1 (1), 43.74 (9) and 20.4 (1)°. In the crystal structure, N—H⋯O and N—H⋯(O,O) hydrogen bonds link the mol­ecules to form an infinite one-dimensional chain parallel to the c axis.

Related literature

For uses of imidazole derivatives, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o971.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Huang et al. (2008[Huang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth. Des. 8, 1795-1797.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N2+·NO3

  • Mr = 373.40

  • Orthorhombic, P 21 21 21

  • a = 8.442 (2) Å

  • b = 12.970 (3) Å

  • c = 17.098 (3) Å

  • V = 1872.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 1.000 (expected range = 0.934–0.978)

  • 19745 measured reflections

  • 4278 independent reflections

  • 2714 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.143

  • S = 1.03

  • 4278 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.05 2.905 (4) 176
N2—H2A⋯O2i 0.86 2.39 2.922 (3) 121
N1—H1A⋯O3 0.86 1.96 2.720 (3) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Imidazole derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Huang et al., 2008; Fu & Xiong, 2008; Dai & Fu, 2008). We report herein the crystal structure of the title compound, 4,5-diphenyl-2-p-tolyl-1H-imidazol-3-ium nitrate.

The title compound contains an organic cation and a nitrate ion in the asymmetric unit. The imidazole N atom in 3-position is protonated. Imidazole and benzene rings are twisted from each other by a dihedral angle of 38.1 (1)°, 43.74 (9)° and 20.4 (1)°. The crystal packing is stabilized by N—H···O hydrogen bonds to form an infinite one-dimensional chain parallel to c axis. (Table 1, Fig. 2).

Related literature top

For uses of imidazole derivatives, see: Dai & Fu (2008); Fu & Xiong (2008); Huang et al. (2008).

Experimental top

Under nitrogen protection, 1,2-diphenyl-ethane-1,2-dione (20 mmol), 4-methylbenzaldehyde (20 mmol) and amine acetate (50 mmol) were dissolved in 60 ml of HOAc. The mixture was stirred at 110 °C for 20 h. The resulting solution was poured into ice water (200 ml) and after neutralizing the mixture with NaOH (6 mol/l) a white solid was obtained. After filtration and washing with distilled water the crude product was recrystallized from an ethanolic solution (150 ml) to which nitric acid (5 ml) was added to yield colorless block-like crystals of the title compound, suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (methyl). H atoms of the N atoms were located in difference Fourier maps and in the last stage of refinement they were treated as riding on the N atom (N—H = 0.86 Å) with Uiso(H) = 1.2Ueq(N).

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the infinte chain realized by hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
4,5-Diphenyl-2-p-tolyl-1H-imidazol-3-ium nitrate top
Crystal data top
C22H19N2+·NO3F(000) = 784
Mr = 373.40Dx = 1.325 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2714 reflections
a = 8.442 (2) Åθ = 3.1–27.5°
b = 12.970 (3) ŵ = 0.09 mm1
c = 17.098 (3) ÅT = 298 K
V = 1872.3 (6) Å3Block, colorless
Z = 40.40 × 0.35 × 0.25 mm
Data collection top
Rigaku Mercury2
diffractometer
4278 independent reflections
Radiation source: fine-focus sealed tube2714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.955, Tmax = 1.000l = 2222
19745 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.288P]
where P = (Fo2 + 2Fc2)/3
4278 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H19N2+·NO3V = 1872.3 (6) Å3
Mr = 373.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.442 (2) ŵ = 0.09 mm1
b = 12.970 (3) ÅT = 298 K
c = 17.098 (3) Å0.40 × 0.35 × 0.25 mm
Data collection top
Rigaku Mercury2
diffractometer
4278 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2714 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.089
19745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4278 reflectionsΔρmin = 0.20 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3099 (3)0.44418 (17)0.66981 (13)0.0415 (6)
H1A0.28040.45030.71770.050*
N20.3114 (3)0.45286 (18)0.54570 (13)0.0438 (6)
H2A0.28270.46540.49840.053*
C160.0757 (3)0.5305 (2)0.60980 (17)0.0409 (7)
C80.4517 (3)0.4054 (2)0.56608 (16)0.0402 (7)
C190.2150 (3)0.6340 (2)0.61119 (19)0.0464 (7)
C70.4501 (3)0.3994 (2)0.64587 (15)0.0368 (6)
C150.2268 (3)0.4767 (2)0.60831 (17)0.0407 (7)
C60.5633 (3)0.3576 (2)0.70270 (15)0.0389 (7)
C10.6475 (3)0.2682 (2)0.68690 (17)0.0462 (7)
H10.63010.23290.64030.055*
C210.0283 (4)0.5898 (2)0.54664 (17)0.0482 (7)
H210.09380.59550.50310.058*
C100.7240 (4)0.3933 (2)0.51284 (18)0.0492 (8)
H100.76300.42130.55910.059*
C170.0230 (3)0.5248 (2)0.67441 (17)0.0483 (8)
H170.00680.48590.71770.058*
C90.5648 (3)0.3741 (2)0.50526 (16)0.0406 (7)
C120.7709 (4)0.3280 (3)0.38461 (18)0.0559 (8)
H120.84030.31380.34380.067*
C200.1144 (4)0.6400 (2)0.54785 (18)0.0499 (8)
H200.14420.67930.50480.060*
C140.5107 (4)0.3290 (3)0.43701 (17)0.0550 (8)
H140.40350.31420.43150.066*
C130.6136 (4)0.3057 (3)0.37721 (18)0.0611 (9)
H130.57610.27490.33180.073*
C40.6997 (4)0.3718 (3)0.82531 (18)0.0594 (9)
H40.71780.40680.87190.071*
C110.8262 (4)0.3713 (3)0.45231 (19)0.0577 (9)
H110.93350.38600.45750.069*
C180.1656 (3)0.5769 (2)0.67453 (17)0.0475 (8)
H180.23000.57330.71860.057*
C50.5878 (4)0.4079 (2)0.77306 (16)0.0482 (8)
H50.52870.46620.78520.058*
C20.7562 (4)0.2313 (3)0.73960 (19)0.0583 (9)
H20.81120.17080.72900.070*
C30.7842 (4)0.2839 (3)0.8083 (2)0.0635 (9)
H30.86030.26000.84310.076*
C220.3743 (4)0.6851 (3)0.6105 (2)0.0662 (9)
H22A0.41430.68690.55800.099*
H22B0.36450.75420.63000.099*
H22C0.44600.64700.64310.099*
O30.1692 (3)0.3887 (2)0.80660 (12)0.0721 (7)
N30.1779 (4)0.4295 (2)0.87181 (16)0.0564 (7)
O20.1035 (4)0.3954 (2)0.92659 (14)0.0901 (9)
O10.2677 (3)0.5050 (2)0.88344 (16)0.0796 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0432 (13)0.0476 (14)0.0338 (12)0.0053 (12)0.0035 (11)0.0016 (10)
N20.0445 (15)0.0562 (15)0.0306 (12)0.0085 (12)0.0007 (11)0.0029 (11)
C160.0384 (15)0.0424 (15)0.0419 (16)0.0045 (13)0.0010 (15)0.0022 (14)
C80.0360 (15)0.0432 (16)0.0413 (16)0.0010 (14)0.0024 (13)0.0032 (13)
C190.0426 (16)0.0425 (15)0.0541 (18)0.0026 (14)0.0014 (16)0.0071 (15)
C70.0331 (14)0.0398 (15)0.0376 (15)0.0001 (13)0.0015 (12)0.0009 (12)
C150.0402 (15)0.0446 (16)0.0374 (16)0.0030 (13)0.0008 (14)0.0038 (14)
C60.0367 (15)0.0470 (16)0.0330 (14)0.0035 (14)0.0009 (12)0.0024 (12)
C10.0410 (16)0.0520 (17)0.0456 (17)0.0058 (15)0.0002 (14)0.0000 (15)
C210.0508 (18)0.0513 (17)0.0426 (17)0.0061 (16)0.0029 (15)0.0078 (14)
C100.0453 (17)0.0503 (17)0.0522 (18)0.0002 (15)0.0004 (14)0.0071 (15)
C170.0475 (17)0.0576 (18)0.0396 (17)0.0040 (15)0.0006 (15)0.0048 (14)
C90.0432 (16)0.0400 (15)0.0387 (15)0.0063 (14)0.0025 (13)0.0037 (13)
C120.057 (2)0.068 (2)0.0424 (18)0.0168 (17)0.0100 (17)0.0034 (17)
C200.057 (2)0.0465 (17)0.0460 (18)0.0091 (16)0.0023 (15)0.0046 (15)
C140.0473 (19)0.075 (2)0.0425 (18)0.0035 (17)0.0005 (15)0.0022 (16)
C130.062 (2)0.082 (2)0.0386 (18)0.0152 (19)0.0057 (16)0.0114 (17)
C40.070 (2)0.068 (2)0.0398 (17)0.014 (2)0.0128 (17)0.0063 (16)
C110.0453 (19)0.062 (2)0.066 (2)0.0002 (17)0.0112 (17)0.0041 (18)
C180.0433 (16)0.0556 (18)0.0435 (17)0.0022 (15)0.0109 (14)0.0055 (15)
C50.0542 (19)0.0508 (18)0.0396 (17)0.0052 (17)0.0005 (15)0.0020 (14)
C20.0446 (19)0.067 (2)0.063 (2)0.0116 (17)0.0022 (17)0.0084 (18)
C30.0506 (19)0.083 (2)0.057 (2)0.0026 (19)0.0162 (17)0.023 (2)
C220.0498 (19)0.064 (2)0.085 (2)0.0097 (16)0.002 (2)0.001 (2)
O30.0800 (17)0.1055 (19)0.0309 (12)0.0005 (15)0.0044 (12)0.0037 (13)
N30.0602 (18)0.0612 (18)0.0477 (17)0.0134 (15)0.0019 (15)0.0046 (14)
O20.142 (3)0.0865 (19)0.0423 (13)0.011 (2)0.0201 (16)0.0009 (14)
O10.0746 (17)0.0722 (16)0.092 (2)0.0013 (15)0.0004 (17)0.0109 (15)
Geometric parameters (Å, º) top
N1—C151.333 (3)C17—H170.9300
N1—C71.381 (3)C9—C141.383 (4)
N1—H1A0.8600C12—C131.364 (5)
N2—C151.324 (3)C12—C111.369 (4)
N2—C81.379 (4)C12—H120.9300
N2—H2A0.8600C20—H200.9300
C16—C211.385 (4)C14—C131.375 (4)
C16—C171.386 (4)C14—H140.9300
C16—C151.454 (4)C13—H130.9300
C8—C71.367 (4)C4—C31.376 (5)
C8—C91.469 (4)C4—C51.382 (4)
C19—C181.377 (4)C4—H40.9300
C19—C201.379 (4)C11—H110.9300
C19—C221.499 (4)C18—H180.9300
C7—C61.467 (4)C5—H50.9300
C6—C51.384 (4)C2—C31.378 (5)
C6—C11.387 (4)C2—H20.9300
C1—C21.372 (4)C3—H30.9300
C1—H10.9300C22—H22A0.9600
C21—C201.370 (4)C22—H22B0.9600
C21—H210.9300C22—H22C0.9600
C10—C91.372 (4)O3—N31.236 (3)
C10—C111.377 (4)N3—O21.212 (3)
C10—H100.9300N3—O11.254 (4)
C17—C181.380 (4)
C15—N1—C7110.5 (2)C13—C12—C11119.8 (3)
C15—N1—H1A124.7C13—C12—H12120.1
C7—N1—H1A124.7C11—C12—H12120.1
C15—N2—C8111.3 (2)C21—C20—C19121.8 (3)
C15—N2—H2A124.4C21—C20—H20119.1
C8—N2—H2A124.4C19—C20—H20119.1
C21—C16—C17118.5 (3)C13—C14—C9120.8 (3)
C21—C16—C15120.4 (3)C13—C14—H14119.6
C17—C16—C15121.1 (3)C9—C14—H14119.6
C7—C8—N2105.6 (2)C12—C13—C14120.0 (3)
C7—C8—C9134.2 (3)C12—C13—H13120.0
N2—C8—C9120.2 (2)C14—C13—H13120.0
C18—C19—C20117.5 (3)C3—C4—C5119.9 (3)
C18—C19—C22121.1 (3)C3—C4—H4120.1
C20—C19—C22121.4 (3)C5—C4—H4120.1
C8—C7—N1106.3 (2)C12—C11—C10120.4 (3)
C8—C7—C6132.6 (3)C12—C11—H11119.8
N1—C7—C6121.2 (2)C10—C11—H11119.8
N2—C15—N1106.3 (2)C19—C18—C17121.8 (3)
N2—C15—C16126.8 (3)C19—C18—H18119.1
N1—C15—C16126.9 (3)C17—C18—H18119.1
C5—C6—C1119.1 (3)C4—C5—C6120.3 (3)
C5—C6—C7120.0 (3)C4—C5—H5119.8
C1—C6—C7120.9 (3)C6—C5—H5119.8
C2—C1—C6120.4 (3)C1—C2—C3120.1 (3)
C2—C1—H1119.8C1—C2—H2119.9
C6—C1—H1119.8C3—C2—H2119.9
C20—C21—C16120.4 (3)C4—C3—C2120.1 (3)
C20—C21—H21119.8C4—C3—H3120.0
C16—C21—H21119.8C2—C3—H3120.0
C9—C10—C11120.3 (3)C19—C22—H22A109.5
C9—C10—H10119.8C19—C22—H22B109.5
C11—C10—H10119.8H22A—C22—H22B109.5
C18—C17—C16120.0 (3)C19—C22—H22C109.5
C18—C17—H17120.0H22A—C22—H22C109.5
C16—C17—H17120.0H22B—C22—H22C109.5
C10—C9—C14118.7 (3)O2—N3—O3120.7 (3)
C10—C9—C8121.3 (3)O2—N3—O1118.4 (3)
C14—C9—C8120.0 (3)O3—N3—O1120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.052.905 (4)176
N2—H2A···O2i0.862.392.922 (3)121
N1—H1A···O30.861.962.720 (3)147
Symmetry code: (i) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H19N2+·NO3
Mr373.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.442 (2), 12.970 (3), 17.098 (3)
V3)1872.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19745, 4278, 2714
Rint0.089
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.143, 1.03
No. of reflections4278
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.052.905 (4)175.6
N2—H2A···O2i0.862.392.922 (3)120.9
N1—H1A···O30.861.962.720 (3)147.3
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o971.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationHuang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth. Des. 8, 1795-1797.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds