metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m695-m696

catena-Poly[[[bis­­(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-9,10-dioxo­anthracene-1,5-di­sulfonato-κ2O1:O5] tetra­hydrate]

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance of Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: encui_yang@yahoo.com.cn

(Received 14 May 2009; accepted 22 May 2009; online 29 May 2009)

The title complex, {[Mn(C14H6O8S2)(C12H8N2)2]·4H2O}n, exhibits a chain-like polymeric structure with 9,10-dioxo­anthracene-1,5-disulfonate anions bridging MnII atoms in a bis-monodentate mode. The unique MnII atom is located on a crystallographic centre of inversion. Four N atoms from two chelating 1,10-phenanthroline ligands and two sulfonate O atoms from two symmetry-related 9,10-dioxoanthracene-1,5-disulfonate anions give rise to a slightly distorted octa­hedral coordination environment around the MnII centre. The centroid of the central ring of the anthraquinone ligand represents another crystallographic centre of inversion. In the crystal structure, inter­ligand ππ stacking [centroid-to-centroid distances 3.532 (1) and 3.497 (3) Å] and inter­molecular O—H⋯O hydrogen-bonding inter­actions assemble the chains into a three-dimensional supra­molecular network.

Related literature

For applications of organosulfonate-based metal complexes, see: Côté & Shimizu (2003[Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.]); Cai (2004[Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For synthetic procedure, see: Cui et al. (2007[Cui, Z. N., Guo, J. H. & Yang, E. C. (2007). Chin. J. Struct. Chem. 26, 717-720.]); Dai et al. (2006[Dai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096-m2098.]); Zhao et al. (2007[Zhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902-906.]). For related structures, see: Cai et al. (2001[Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.]); Du et al. (2006[Du, Z. Y., Xu, H. B. & Mao, J. G. (2006). Inorg. Chem. 45, 9780-9788.]); Gándara et al. (2006[Gándara, F., Revilla, C. F., Snejko, N., Puebla, E. G., Iglesias, M. & Monge, M. A. (2006). Inorg. Chem. 45, 9680-9687.]); Wu et al. (2007[Wu, M.-J., Dai, P.-X., Wang, X.-G., Yang, E.-C. & Zhao, X.-J. (2007). Acta Cryst. E63, m2413.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H6O8S2)(C12H8N2)2]·4H2O

  • Mr = 853.74

  • Triclinic, [P \overline 1]

  • a = 8.8882 (9) Å

  • b = 9.578 (1) Å

  • c = 11.016 (1) Å

  • α = 105.962 (1)°

  • β = 103.050 (1)°

  • γ = 93.120 (1)°

  • V = 871.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 294 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.865

  • 4767 measured reflections

  • 3042 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.05

  • 3042 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H5A⋯O2i 0.85 2.03 2.826 (2) 156
O5W—H5B⋯O2ii 0.85 2.10 2.948 (2) 172
O6W—H6A⋯O5Wiii 0.85 2.13 2.868 (3) 145
O6W—H6B⋯O3iv 0.85 2.12 2.922 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, organosulfonate-based metal complexes have drawn intense interest due to their adjustable coordination ability and interesting applications as functional materials [Cai, 2004; Côté & Shimizu, 2003; Zhao et al., 2007]. By introducing popular nitrogen-containing functional organic molecules as coligands, a series of sulfonate-based complexes have successfully been synthesized, which exhibit diverse structures ranging from discrete zero-dimensional (0D) to infinite high-dimensional structures [Cai et al., 2001; Gándara et al., 2006; Du et al., 2006]. As part of our continuous investigation on the coordination chemistry of mixed-ligand systems [Dai et al., 2006; Cui et al., 2007; Wu et al., 2007], we herein report the crystal structure of a MnII complex with 1,10-phenanthroline and 9,10-dioxoanthracene-1,5-disulfonate ligands (I).

The local coordination environment of MnII atom in I is shown in Fig. 1. The unique MnII atom is situated on a crystallodraphic centre of inversion and is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two sulfonate O atoms from two independent 9,10-dioxoanthracene-1,5-disulfonate anions, exhibiting a slightly distorted octahedral coordination mode. The centrosymmetric 9,10-dioxoanthracene-1,5-disulfonate anion adopts a bis-monodentate mode, linking the adjacent MnII atoms into a one-dimensional infinite chain along the c-axis (Fig. 2). Two interligand ππ stacking interactions between the intrachain 1,10-phenanthroline and anthraquinone ring as well as between the two interchain 1,10-phenanthroline rings were observed (Fig. 1 and 2), which stabilize the one-dimensional chain and further extend the chains into a two-dimensional plane. The centroid–centroid distance and the dihedral angle between the 1,10-phenanthroline and anthraquinone ring measures to 3.532 (1) Å and 2.704 (4)°. In contrast, the π-stacking parameters between the interchain 1,10-phenanthroline rings are 3.497 (3) Å and 0.0°, respectively.

Additionally, the adjacent two-dimensional planes are extended into a three-dimensional supramolecular network by fourfold O—H···O hydrogen-bonding interactions between the sulfonate O atoms and the lattice water molecules (Table 1 and Fig. 2).

Related literature top

For applications of organosulfonate-based metal complexes [Revised text OK?], see: Côté & Shimizu (2003); Cai (2004). For synthetic procedure, see: Cui et al. (2007); Dai et al. (2006); Zhao et al. (2007). For related structures, see: Cai et al. (2001); Du et al. (2006); Gándara et al. (2006); Wu et al. (2007).

Experimental top

A mixture of disodium 9,10-dioxoanthracene-1,5-disulfonate (164.8 mg, 0.4 mmol), Mn(OAc)2.4H2O (98.0 mg, 0.4 mmol), 1,10-phenanthroline (79.3 mg, 0.4 mmol), and H2O (20 ml) was sealed in a 23 ml teflon lined stainless steel vessel. The vessel was heated to 413 K for 2 d under autogenous pressure and then cooled to room temperature at a rate of 2.4 K/h. Yellow block-shaped crystals suitable for X-ray analysis were obtained in a 41% yield. Analysis calculated for C19H15Mn0.50N2O6S: C 53.46, H 3.54, N 6.56%; found: C 53.56, H 3.50, N 6.70%.

Refinement top

H atoms were located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å and O—H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2Ueq(C,O)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment of MnII in I) drawn with 30% probability displacement ellipsoids. H atoms were omitted for clarity. The short dashed lines indicate interligand π-π stacking interactions [Symmetry code: (A) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. The three-dimensional supramolecular network of (I) produced by hydrogen-bonding and ππ stacking interactions.
catena-Poly[[[bis(1,10-phenanthroline- κ2N,N')manganese(II)]-µ-9,10-dioxoanthracene-1,5- disulfonato-κ2O1:\<i>O5] tetrahydrate] top
Crystal data top
[Mn(C14H6O8S2)(C12H8N2)2]·4H2OZ = 1
Mr = 853.74F(000) = 439
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8882 (9) ÅCell parameters from 3691 reflections
b = 9.578 (1) Åθ = 2.2–27.9°
c = 11.016 (1) ŵ = 0.58 mm1
α = 105.962 (1)°T = 294 K
β = 103.050 (1)°Block, yellow
γ = 93.120 (1)°0.32 × 0.28 × 0.26 mm
V = 871.5 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3042 independent reflections
Radiation source: fine-focus sealed tube2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.838, Tmax = 0.865k = 118
4767 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3551P]
where P = (Fo2 + 2Fc2)/3
3042 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C14H6O8S2)(C12H8N2)2]·4H2Oγ = 93.120 (1)°
Mr = 853.74V = 871.5 (2) Å3
Triclinic, P1Z = 1
a = 8.8882 (9) ÅMo Kα radiation
b = 9.578 (1) ŵ = 0.58 mm1
c = 11.016 (1) ÅT = 294 K
α = 105.962 (1)°0.32 × 0.28 × 0.26 mm
β = 103.050 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3042 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2751 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.865Rint = 0.011
4767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3042 reflectionsΔρmin = 0.32 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.02553 (13)
S10.34382 (5)0.24029 (5)0.21379 (4)0.03110 (14)
O10.34939 (15)0.38120 (14)0.30894 (12)0.0344 (3)
O20.19137 (17)0.18841 (18)0.12816 (15)0.0506 (4)
O30.40672 (19)0.13426 (17)0.27693 (17)0.0532 (4)
O40.2494 (2)0.4691 (2)0.0881 (2)0.0710 (6)
N10.59998 (18)0.65125 (17)0.40181 (15)0.0323 (3)
N20.71074 (17)0.40323 (16)0.44201 (15)0.0294 (3)
C10.3690 (2)0.4857 (2)0.05604 (19)0.0388 (5)
C20.4839 (2)0.3789 (2)0.05903 (17)0.0307 (4)
C30.4760 (2)0.2649 (2)0.11671 (17)0.0306 (4)
C40.5807 (2)0.1633 (2)0.1047 (2)0.0389 (5)
H40.57560.08840.14290.047*
C50.6932 (3)0.1712 (2)0.0368 (2)0.0448 (5)
H50.75970.09950.02640.054*
C60.7061 (2)0.2844 (2)0.0148 (2)0.0425 (5)
H60.78380.29160.05760.051*
C70.6032 (2)0.3891 (2)0.00353 (18)0.0338 (4)
C80.7230 (2)0.60542 (19)0.35365 (17)0.0284 (4)
C90.5491 (3)0.7727 (2)0.3818 (2)0.0454 (5)
H90.46520.80500.41420.055*
C100.6133 (3)0.8547 (2)0.3155 (2)0.0486 (5)
H100.57270.93910.30410.058*
C110.7358 (3)0.8100 (2)0.2677 (2)0.0448 (5)
H110.78060.86390.22350.054*
C120.7950 (2)0.6821 (2)0.28506 (19)0.0351 (4)
C130.9234 (2)0.6277 (2)0.2369 (2)0.0436 (5)
H130.97020.67790.19110.052*
C140.9780 (2)0.5056 (2)0.2565 (2)0.0435 (5)
H141.06160.47240.22390.052*
C150.9090 (2)0.4258 (2)0.32685 (19)0.0345 (4)
C160.9640 (2)0.2989 (2)0.3505 (2)0.0419 (5)
H161.04800.26340.32000.050*
C170.8938 (2)0.2278 (2)0.4183 (2)0.0431 (5)
H170.92900.14360.43480.052*
C180.7684 (2)0.2839 (2)0.4623 (2)0.0383 (5)
H180.72170.23490.50900.046*
C190.7815 (2)0.47471 (19)0.37489 (17)0.0281 (4)
O5W0.9995 (2)0.9273 (2)0.12804 (18)0.0708 (5)
H5A0.95200.86940.05390.106*
H5B1.04691.00730.12890.106*
O6W0.7867 (3)0.0448 (3)0.6265 (2)0.0998 (8)
H6A0.86580.08440.68920.150*
H6B0.73050.02550.63400.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0264 (2)0.0268 (2)0.0277 (2)0.00381 (15)0.01252 (15)0.01015 (15)
S10.0332 (3)0.0287 (2)0.0334 (3)0.00064 (18)0.0137 (2)0.00874 (19)
O10.0354 (7)0.0363 (7)0.0301 (7)0.0033 (5)0.0105 (6)0.0061 (5)
O20.0369 (8)0.0589 (10)0.0456 (9)0.0125 (7)0.0110 (7)0.0018 (7)
O30.0627 (10)0.0451 (9)0.0749 (11)0.0172 (7)0.0383 (9)0.0358 (8)
O40.0518 (10)0.1099 (15)0.1036 (15)0.0435 (10)0.0535 (10)0.0824 (13)
N10.0336 (8)0.0312 (8)0.0380 (9)0.0052 (6)0.0160 (7)0.0138 (7)
N20.0286 (8)0.0310 (8)0.0330 (8)0.0038 (6)0.0120 (6)0.0128 (6)
C10.0334 (10)0.0589 (13)0.0369 (11)0.0142 (9)0.0180 (8)0.0259 (10)
C20.0282 (9)0.0396 (10)0.0251 (9)0.0035 (8)0.0082 (7)0.0095 (8)
C30.0305 (9)0.0329 (9)0.0269 (9)0.0003 (7)0.0098 (7)0.0046 (7)
C40.0430 (11)0.0329 (10)0.0435 (11)0.0057 (8)0.0177 (9)0.0100 (9)
C50.0461 (12)0.0413 (11)0.0546 (13)0.0159 (9)0.0245 (10)0.0148 (10)
C60.0395 (11)0.0510 (12)0.0467 (12)0.0136 (9)0.0250 (10)0.0171 (10)
C70.0304 (9)0.0446 (11)0.0308 (10)0.0083 (8)0.0123 (8)0.0137 (8)
C80.0267 (9)0.0315 (9)0.0269 (9)0.0024 (7)0.0092 (7)0.0074 (7)
C90.0479 (12)0.0411 (11)0.0634 (14)0.0145 (9)0.0302 (11)0.0265 (10)
C100.0555 (14)0.0404 (11)0.0653 (15)0.0115 (10)0.0261 (12)0.0304 (11)
C110.0519 (13)0.0416 (11)0.0509 (12)0.0002 (10)0.0215 (10)0.0240 (10)
C120.0357 (10)0.0366 (10)0.0346 (10)0.0039 (8)0.0121 (8)0.0120 (8)
C130.0407 (11)0.0512 (12)0.0470 (12)0.0032 (9)0.0247 (10)0.0180 (10)
C140.0362 (11)0.0507 (12)0.0494 (12)0.0034 (9)0.0246 (10)0.0132 (10)
C150.0284 (9)0.0385 (10)0.0359 (10)0.0016 (8)0.0132 (8)0.0062 (8)
C160.0315 (10)0.0453 (12)0.0501 (12)0.0103 (9)0.0180 (9)0.0089 (10)
C170.0405 (11)0.0395 (11)0.0550 (13)0.0138 (9)0.0162 (10)0.0182 (10)
C180.0366 (10)0.0396 (11)0.0482 (12)0.0095 (8)0.0182 (9)0.0211 (9)
C190.0248 (9)0.0314 (9)0.0261 (9)0.0012 (7)0.0075 (7)0.0055 (7)
O5W0.0725 (12)0.0829 (13)0.0555 (10)0.0218 (10)0.0079 (9)0.0305 (10)
O6W0.1002 (17)0.1057 (18)0.0955 (16)0.0265 (14)0.0050 (13)0.0642 (14)
Geometric parameters (Å, º) top
Mn1—O1i2.1820 (12)C7—C1ii1.499 (3)
Mn1—O12.1820 (12)C8—C121.412 (3)
Mn1—N22.2758 (15)C8—C191.438 (3)
Mn1—N2i2.2758 (15)C9—C101.390 (3)
Mn1—N1i2.2834 (15)C9—H90.9300
Mn1—N12.2834 (15)C10—C111.353 (3)
S1—O21.4368 (15)C10—H100.9300
S1—O31.4499 (16)C11—C121.403 (3)
S1—O11.4539 (13)C11—H110.9300
S1—C31.8042 (18)C12—C131.429 (3)
O4—C11.210 (2)C13—C141.343 (3)
N1—C91.326 (3)C13—H130.9300
N1—C81.362 (2)C14—C151.432 (3)
N2—C181.331 (2)C14—H140.9300
N2—C191.361 (2)C15—C161.402 (3)
C1—C21.485 (3)C15—C191.406 (3)
C1—C7ii1.499 (3)C16—C171.362 (3)
C2—C71.401 (2)C16—H160.9300
C2—C31.412 (3)C17—C181.390 (3)
C3—C41.383 (3)C17—H170.9300
C4—C51.388 (3)C18—H180.9300
C4—H40.9300O5W—H5A0.8502
C5—C61.366 (3)O5W—H5B0.8502
C5—H50.9300O6W—H6A0.8503
C6—C71.393 (3)O6W—H6B0.8500
C6—H60.9300
O1i—Mn1—O1180.0C5—C6—H6119.9
O1i—Mn1—N288.86 (5)C7—C6—H6119.9
O1—Mn1—N291.14 (5)C6—C7—C2120.69 (18)
O1i—Mn1—N2i91.14 (5)C6—C7—C1ii116.82 (17)
O1—Mn1—N2i88.86 (5)C2—C7—C1ii122.43 (17)
N2—Mn1—N2i180.00 (7)N1—C8—C12122.37 (17)
O1i—Mn1—N1i87.76 (5)N1—C8—C19118.36 (15)
O1—Mn1—N1i92.24 (5)C12—C8—C19119.27 (16)
N2—Mn1—N1i106.48 (5)N1—C9—C10124.2 (2)
N2i—Mn1—N1i73.52 (5)N1—C9—H9117.9
O1i—Mn1—N192.24 (5)C10—C9—H9117.9
O1—Mn1—N187.76 (5)C11—C10—C9119.0 (2)
N2—Mn1—N173.52 (5)C11—C10—H10120.5
N2i—Mn1—N1106.48 (5)C9—C10—H10120.5
N1i—Mn1—N1179.999 (2)C10—C11—C12119.77 (19)
O2—S1—O3112.74 (10)C10—C11—H11120.1
O2—S1—O1112.54 (9)C12—C11—H11120.1
O3—S1—O1111.06 (9)C11—C12—C8117.56 (18)
O2—S1—C3108.28 (9)C11—C12—C13122.97 (18)
O3—S1—C3104.66 (9)C8—C12—C13119.46 (19)
O1—S1—C3107.04 (8)C14—C13—C12121.33 (19)
S1—O1—Mn1135.36 (8)C14—C13—H13119.3
C9—N1—C8117.14 (16)C12—C13—H13119.3
C9—N1—Mn1128.11 (13)C13—C14—C15120.80 (19)
C8—N1—Mn1114.68 (12)C13—C14—H14119.6
C18—N2—C19117.16 (16)C15—C14—H14119.6
C18—N2—Mn1127.72 (12)C16—C15—C19117.87 (18)
C19—N2—Mn1115.07 (12)C16—C15—C14122.40 (18)
O4—C1—C2121.34 (19)C19—C15—C14119.73 (19)
O4—C1—C7ii119.27 (19)C17—C16—C15119.72 (18)
C2—C1—C7ii119.26 (16)C17—C16—H16120.1
C7—C2—C3118.43 (17)C15—C16—H16120.1
C7—C2—C1117.76 (17)C16—C17—C18118.60 (19)
C3—C2—C1123.77 (16)C16—C17—H17120.7
C4—C3—C2119.42 (17)C18—C17—H17120.7
C4—C3—S1114.57 (15)N2—C18—C17124.23 (18)
C2—C3—S1125.96 (14)N2—C18—H18117.9
C3—C4—C5121.22 (19)C17—C18—H18117.9
C3—C4—H4119.4N2—C19—C15122.41 (17)
C5—C4—H4119.4N2—C19—C8118.19 (15)
C6—C5—C4119.86 (19)C15—C19—C8119.40 (16)
C6—C5—H5120.1H5A—O5W—H5B117.0
C4—C5—H5120.1H6A—O6W—H6B117.0
C5—C6—C7120.25 (18)
O2—S1—O1—Mn1157.33 (11)C4—C5—C6—C72.3 (3)
O3—S1—O1—Mn129.85 (14)C5—C6—C7—C20.9 (3)
C3—S1—O1—Mn183.83 (12)C5—C6—C7—C1ii176.6 (2)
O1i—Mn1—O1—S1163 (13)C3—C2—C7—C63.5 (3)
N2—Mn1—O1—S133.35 (11)C1—C2—C7—C6174.07 (19)
N2i—Mn1—O1—S1146.65 (11)C3—C2—C7—C1ii173.82 (17)
N1i—Mn1—O1—S173.20 (11)C1—C2—C7—C1ii8.6 (3)
N1—Mn1—O1—S1106.81 (11)C9—N1—C8—C120.0 (3)
O1i—Mn1—N1—C991.40 (18)Mn1—N1—C8—C12177.27 (14)
O1—Mn1—N1—C988.60 (18)C9—N1—C8—C19179.47 (18)
N2—Mn1—N1—C9179.54 (19)Mn1—N1—C8—C193.2 (2)
N2i—Mn1—N1—C90.45 (19)C8—N1—C9—C100.0 (3)
N1i—Mn1—N1—C937 (8)Mn1—N1—C9—C10176.90 (18)
O1i—Mn1—N1—C891.68 (13)N1—C9—C10—C110.1 (4)
O1—Mn1—N1—C888.32 (13)C9—C10—C11—C120.4 (4)
N2—Mn1—N1—C83.53 (12)C10—C11—C12—C80.4 (3)
N2i—Mn1—N1—C8176.47 (12)C10—C11—C12—C13179.7 (2)
N1i—Mn1—N1—C8146 (8)N1—C8—C12—C110.2 (3)
O1i—Mn1—N2—C1886.18 (16)C19—C8—C12—C11179.24 (17)
O1—Mn1—N2—C1893.82 (16)N1—C8—C12—C13179.86 (18)
N2i—Mn1—N2—C1836 (17)C19—C8—C12—C130.7 (3)
N1i—Mn1—N2—C181.15 (17)C11—C12—C13—C14179.3 (2)
N1—Mn1—N2—C18178.85 (17)C8—C12—C13—C140.6 (3)
O1i—Mn1—N2—C1996.18 (12)C12—C13—C14—C150.2 (3)
O1—Mn1—N2—C1983.82 (12)C13—C14—C15—C16179.2 (2)
N2i—Mn1—N2—C19146 (17)C13—C14—C15—C190.8 (3)
N1i—Mn1—N2—C19176.49 (12)C19—C15—C16—C170.1 (3)
N1—Mn1—N2—C193.51 (12)C14—C15—C16—C17179.9 (2)
O4—C1—C2—C7167.4 (2)C15—C16—C17—C180.1 (3)
C7ii—C1—C2—C78.3 (3)C19—N2—C18—C170.8 (3)
O4—C1—C2—C310.0 (3)Mn1—N2—C18—C17176.82 (16)
C7ii—C1—C2—C3174.24 (17)C16—C17—C18—N20.4 (3)
C7—C2—C3—C43.0 (3)C18—N2—C19—C150.7 (3)
C1—C2—C3—C4174.46 (18)Mn1—N2—C19—C15177.20 (13)
C7—C2—C3—S1174.29 (14)C18—N2—C19—C8178.94 (17)
C1—C2—C3—S18.3 (3)Mn1—N2—C19—C83.2 (2)
O2—S1—C3—C4108.81 (16)C16—C15—C19—N20.3 (3)
O3—S1—C3—C411.67 (17)C14—C15—C19—N2179.75 (18)
O1—S1—C3—C4129.62 (14)C16—C15—C19—C8179.36 (17)
O2—S1—C3—C273.81 (18)C14—C15—C19—C80.6 (3)
O3—S1—C3—C2165.72 (16)N1—C8—C19—N20.1 (2)
O1—S1—C3—C247.77 (18)C12—C8—C19—N2179.57 (16)
C2—C3—C4—C50.2 (3)N1—C8—C19—C15179.58 (16)
S1—C3—C4—C5177.72 (16)C12—C8—C19—C150.1 (3)
C3—C4—C5—C62.8 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5A···O2ii0.852.032.826 (2)156
O5W—H5B···O2iii0.852.102.948 (2)172
O6W—H6A···O5Wiv0.852.132.868 (3)145
O6W—H6B···O3v0.852.122.922 (3)157
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C14H6O8S2)(C12H8N2)2]·4H2O
Mr853.74
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.8882 (9), 9.578 (1), 11.016 (1)
α, β, γ (°)105.962 (1), 103.050 (1), 93.120 (1)
V3)871.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
4767, 3042, 2751
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.05
No. of reflections3042
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5A···O2i0.852.032.826 (2)156.1
O5W—H5B···O2ii0.852.102.948 (2)171.8
O6W—H6A···O5Wiii0.852.132.868 (3)144.5
O6W—H6B···O3iv0.852.122.922 (3)156.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Youth Fund of Tianjin Normal University (HKZ).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.  Web of Science CSD CrossRef Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–64.  Web of Science CrossRef CAS Google Scholar
First citationCui, Z. N., Guo, J. H. & Yang, E. C. (2007). Chin. J. Struct. Chem. 26, 717–720.  CAS Google Scholar
First citationDai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096–m2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, Z. Y., Xu, H. B. & Mao, J. G. (2006). Inorg. Chem. 45, 9780–9788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGándara, F., Revilla, C. F., Snejko, N., Puebla, E. G., Iglesias, M. & Monge, M. A. (2006). Inorg. Chem. 45, 9680–9687.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, M.-J., Dai, P.-X., Wang, X.-G., Yang, E.-C. & Zhao, X.-J. (2007). Acta Cryst. E63, m2413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902–906.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m695-m696
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds