metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­(1,10-phenanthroline-κ2N,N′)nickel(II)]-μ-1H-benzimidazole-5,6-di­carboxyl­ato-κ2N3:O6]

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 18 May 2009; accepted 24 May 2009; online 29 May 2009)

In the title complex, [Ni(C9H4N2O4)(C12H8N2)(H2O)2]n, the NiII atom is hexa­coordinated by one N and one O atom from two different 1H-benzimidazole-5,6-dicarboxyl­ate ligands, two N atoms from one 1,10-phenanthroline ligand and two water mol­ecules. The flexible 1H-benzimidazole-5,6-dicarboxyl­ate ligands link the NiII centres, forming an infinite zigzag chain parallel to [001]. The crystal packing is governed by inter­molecular hydrogen-bonding inter­actions of the O—H⋯O, N—H⋯O and C—H⋯O types.

Related literature

For background to 1H-benzoimidazole-5,6-dicarboxyl­ate complexes, see: Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Yao et al. (2008[Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299-2306.]); Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]). For background to 1,10-phenanthroline complexes, see: Chesnut et al. (1999[Chesnut, D. J., Haushalter, R. C. & Zubieta, J. (1999). Inorg. Chim. Acta, 292, 41-51.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H4N2O4)(C12H8N2)(H2O)2]

  • Mr = 479.09

  • Monoclinic, P 21 /c

  • a = 10.021 (2) Å

  • b = 16.980 (3) Å

  • c = 15.327 (5) Å

  • β = 129.09 (2)°

  • V = 2024.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.31 × 0.26 × 0.22 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.746, Tmax = 0.809

  • 15765 measured reflections

  • 3639 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.09

  • 3639 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.84 1.90 2.710 (2) 163
O1W—H2W⋯O4ii 0.84 1.76 2.584 (2) 165
O2W—H3W⋯O1i 0.84 1.87 2.703 (2) 169
O2W—H4W⋯O1ii 0.84 2.11 2.932 (2) 165
N2—H2⋯O2iii 0.86 2.00 2.739 (2) 144
N2—H2⋯O1iii 0.86 2.54 3.355 (2) 159
C10—H10⋯O2ii 0.93 2.56 3.346 (8) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the structural investigation of 1H-benzimidazole-5,6-dicarboxylate complexes, it has been found that 1H-benzimidazole-5,6-dicarboxylic acid can function as a multidentate ligand (Lo et al., 2007; Yao et al., 2008; Gao et al., 2008), with versatile binding and coordination modes. 1,10-Phenanthroline is also a good example for a bridging ligand that can link metal centres into extended networks, and a number of one-, two- and three- dimensional metal-1,10-phenanthroline frameworks have been generated (Chesnut et al., 1999). The reaction of 1H-benzimidazole-5,6-dicarboxylic acid with nickel chloride in an alkaline aqueous solution yielded a new NiII coordination polymer, whose crystal structure is reported here.

As illustrated in Figure 1, the NiII atom exhibits a slightly distorted octahedral coordination sphere, defined by one N and one O atom from two different 1H-benzimidazole-5,6-dicarboxylate ligands, two N atoms from one 1,10-phenanthroline ligand and two water molecules. The metal atoms are linked by bidentate 1H-benzimidazole-5,6-dicarboxylate groups into a linear chain (Fig. 2). Inter/intramolecular O—H···O and C—H···O hydrogen bonds between the carboxylate O atoms of 1H-benzimidazole-5,6-dicarboxylate and the coordinated water molecule lead to a two-dimensional layer (Fig. 3). The layers are further self-assembled into a three-dimensional supramolecular network by intermolecular N—H···O hydrogen bonds between the imidazole units and carboxylate groups (Table 1).

Related literature top

For background to 1H-benzimidazole-5,6-dicarboxylate complexes, see: Lo et al. (2007); Yao et al. (2008); Gao et al. (2008). For background to 1,10-phenanthroline complexes, see: Chesnut et al. (1999).

Experimental top

A mixture of nickel chloride (1 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (1 mmol), 1,10-phenanthroline (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. [Symmetry codes: (i) x, 1/2 - y, 1/2 + z.
[Figure 2] Fig. 2. A view of the infinite chain of title compound.
[Figure 3] Fig. 3. A view of the two-dimensional layer constructed by O—H···O and C—H···O hydrogen bonding interactions.
catena-Poly[[diaqua(1,10-phenanthroline- κ2N,N')nickel(II)]-µ-1H-benzimidazole-5,6- dicarboxylato-κ2N3:O6] top
Crystal data top
[Ni(C9H4N2O4)(C12H8N2)(H2O)2]F(000) = 984
Mr = 479.09Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 10.021 (2) Åθ = 1.4–28°
b = 16.980 (3) ŵ = 1.01 mm1
c = 15.327 (5) ÅT = 293 K
β = 129.09 (2)°Block, blue
V = 2024.3 (9) Å30.31 × 0.26 × 0.22 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1112
Tmin = 0.746, Tmax = 0.809k = 2020
15765 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2141P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C9H4N2O4)(C12H8N2)(H2O)2]V = 2024.3 (9) Å3
Mr = 479.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.021 (2) ŵ = 1.01 mm1
b = 16.980 (3) ÅT = 293 K
c = 15.327 (5) Å0.31 × 0.26 × 0.22 mm
β = 129.09 (2)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3195 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.809Rint = 0.039
15765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
3639 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.55530 (3)0.434786 (13)0.82246 (2)0.02591 (11)
O10.38387 (19)0.10540 (8)0.49825 (13)0.0398 (4)
O1W0.76448 (17)0.50597 (8)0.94690 (12)0.0318 (3)
H1W0.72830.54410.96170.048*
H2W0.81370.47361.00030.048*
O20.27333 (18)0.22040 (9)0.41361 (14)0.0456 (4)
O2W0.39504 (19)0.49621 (9)0.84828 (13)0.0395 (4)
H3W0.45210.53410.89200.059*
H4W0.37960.46180.88050.059*
O30.59904 (17)0.14247 (8)0.43858 (11)0.0314 (3)
O40.86749 (19)0.10944 (10)0.58603 (13)0.0479 (4)
N10.7201 (2)0.37301 (10)0.80627 (14)0.0296 (4)
N20.9708 (2)0.34131 (11)0.84962 (15)0.0357 (4)
H21.07930.34210.88370.043*
N30.3234 (2)0.38391 (10)0.68890 (14)0.0334 (4)
N50.4878 (3)0.51071 (11)0.69453 (16)0.0407 (4)
C10.5577 (2)0.22029 (11)0.58394 (16)0.0259 (4)
C20.7187 (2)0.20098 (11)0.61273 (16)0.0277 (4)
C30.8679 (2)0.23640 (12)0.70388 (17)0.0300 (4)
H30.97500.22270.72570.036*
C40.8508 (2)0.29313 (12)0.76130 (16)0.0288 (4)
C50.6930 (2)0.31336 (11)0.73392 (16)0.0261 (4)
C60.5439 (2)0.27566 (11)0.64394 (17)0.0273 (4)
H60.43780.28750.62480.033*
C70.8876 (3)0.38666 (13)0.87258 (18)0.0355 (5)
H70.94190.42410.92960.043*
C80.3932 (2)0.17945 (12)0.48969 (17)0.0296 (4)
C90.7307 (2)0.14601 (11)0.54114 (17)0.0297 (4)
C100.2431 (3)0.32210 (15)0.6884 (2)0.0456 (6)
H100.29250.29530.75540.055*
C110.0856 (3)0.29550 (19)0.5899 (3)0.0632 (8)
H110.03220.25140.59150.076*
C120.0117 (3)0.33512 (19)0.4919 (2)0.0622 (8)
H120.09270.31780.42630.075*
C130.0909 (3)0.40118 (17)0.4888 (2)0.0523 (7)
C140.0237 (4)0.4466 (2)0.3894 (2)0.0712 (9)
H140.08210.43320.32170.085*
C150.1116 (5)0.5081 (2)0.3928 (2)0.0775 (10)
H150.06670.53520.32680.093*
C160.2709 (4)0.53257 (17)0.4943 (2)0.0600 (7)
C170.3695 (5)0.59590 (19)0.5046 (3)0.0785 (10)
H170.32960.62570.44150.094*
C180.5209 (5)0.61432 (19)0.6043 (3)0.0812 (10)
H180.58650.65580.60990.097*
C190.5781 (4)0.57061 (14)0.6991 (3)0.0577 (7)
H190.68270.58360.76780.069*
C200.3383 (3)0.49073 (13)0.59409 (19)0.0406 (5)
C210.2485 (3)0.42380 (14)0.59078 (19)0.0391 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02516 (17)0.02713 (17)0.02261 (17)0.00032 (8)0.01370 (14)0.00058 (9)
O10.0485 (9)0.0309 (8)0.0463 (9)0.0124 (6)0.0330 (8)0.0050 (6)
O1W0.0337 (8)0.0273 (7)0.0319 (8)0.0008 (5)0.0196 (7)0.0031 (6)
O20.0250 (8)0.0409 (9)0.0475 (10)0.0004 (6)0.0117 (8)0.0029 (7)
O2W0.0397 (8)0.0405 (8)0.0361 (9)0.0052 (6)0.0228 (8)0.0012 (6)
O30.0311 (7)0.0347 (7)0.0257 (7)0.0014 (5)0.0165 (7)0.0032 (6)
O40.0298 (8)0.0577 (10)0.0384 (9)0.0097 (7)0.0130 (7)0.0155 (8)
N10.0280 (9)0.0324 (9)0.0272 (9)0.0026 (6)0.0168 (8)0.0065 (7)
N20.0222 (8)0.0463 (10)0.0297 (9)0.0029 (7)0.0121 (8)0.0118 (8)
N30.0301 (9)0.0417 (10)0.0281 (9)0.0000 (7)0.0181 (8)0.0045 (7)
N50.0483 (11)0.0373 (10)0.0342 (10)0.0045 (8)0.0250 (10)0.0062 (8)
C10.0247 (10)0.0249 (9)0.0250 (10)0.0008 (7)0.0141 (9)0.0011 (7)
C20.0266 (10)0.0275 (10)0.0249 (10)0.0023 (7)0.0142 (9)0.0004 (8)
C30.0238 (9)0.0356 (11)0.0280 (10)0.0020 (8)0.0150 (9)0.0013 (8)
C40.0247 (9)0.0324 (10)0.0234 (10)0.0004 (7)0.0123 (9)0.0004 (8)
C50.0273 (9)0.0259 (9)0.0253 (10)0.0003 (7)0.0167 (9)0.0006 (8)
C60.0227 (9)0.0301 (10)0.0306 (11)0.0013 (7)0.0175 (9)0.0022 (8)
C70.0290 (11)0.0405 (12)0.0309 (11)0.0045 (8)0.0159 (10)0.0123 (9)
C80.0283 (10)0.0314 (11)0.0331 (11)0.0057 (8)0.0212 (9)0.0058 (8)
C90.0251 (10)0.0316 (10)0.0296 (11)0.0026 (8)0.0160 (9)0.0027 (8)
C100.0447 (13)0.0568 (15)0.0428 (13)0.0148 (11)0.0311 (12)0.0131 (11)
C110.0558 (16)0.084 (2)0.0632 (19)0.0333 (15)0.0437 (16)0.0301 (16)
C120.0387 (14)0.091 (2)0.0433 (16)0.0135 (13)0.0195 (13)0.0268 (15)
C130.0389 (13)0.0677 (17)0.0340 (13)0.0058 (12)0.0152 (12)0.0118 (12)
C140.0542 (18)0.091 (2)0.0265 (14)0.0131 (15)0.0055 (14)0.0051 (13)
C150.085 (2)0.079 (2)0.0324 (15)0.0178 (18)0.0202 (16)0.0141 (14)
C160.0776 (19)0.0562 (16)0.0387 (14)0.0174 (14)0.0330 (15)0.0119 (12)
C170.110 (3)0.0605 (19)0.056 (2)0.0062 (18)0.048 (2)0.0265 (15)
C180.112 (3)0.0601 (19)0.069 (2)0.0128 (18)0.056 (2)0.0185 (16)
C190.0712 (19)0.0452 (15)0.0536 (17)0.0087 (12)0.0378 (16)0.0068 (11)
C200.0473 (13)0.0392 (12)0.0311 (12)0.0119 (9)0.0227 (11)0.0060 (9)
C210.0332 (12)0.0501 (13)0.0249 (11)0.0109 (9)0.0140 (10)0.0035 (9)
Geometric parameters (Å, º) top
Ni1—O3i2.0241 (14)C2—C91.502 (3)
Ni1—N52.0715 (19)C3—C41.386 (3)
Ni1—N32.0828 (18)C3—H30.9300
Ni1—N12.0994 (16)C4—C51.399 (3)
Ni1—O1W2.1098 (15)C5—C61.395 (3)
Ni1—O2W2.1507 (15)C6—H60.9300
O1—C81.274 (2)C7—H70.9300
O1W—H1W0.8402C10—C111.404 (3)
O1W—H2W0.8401C10—H100.9300
O2—C81.233 (2)C11—C121.362 (4)
O2W—H3W0.8400C11—H110.9300
O2W—H4W0.8400C12—C131.392 (4)
O3—C91.265 (2)C12—H120.9300
O3—Ni1ii2.0241 (14)C13—C211.404 (3)
O4—C91.244 (2)C13—C141.441 (4)
N1—C71.323 (3)C14—C151.345 (5)
N1—C51.396 (3)C14—H140.9300
N2—C71.335 (3)C15—C161.418 (4)
N2—C41.376 (3)C15—H150.9300
N2—H20.8600C16—C171.400 (5)
N3—C101.319 (3)C16—C201.413 (3)
N3—C211.364 (3)C17—C181.346 (5)
N5—C191.334 (3)C17—H170.9300
N5—C201.350 (3)C18—C191.393 (4)
C1—C61.381 (3)C18—H180.9300
C1—C21.417 (3)C19—H190.9300
C1—C81.510 (3)C20—C211.431 (3)
C2—C31.384 (3)
O3i—Ni1—N5174.88 (7)C1—C6—C5118.45 (17)
O3i—Ni1—N394.83 (7)C1—C6—H6120.8
N5—Ni1—N380.31 (8)C5—C6—H6120.8
O3i—Ni1—N191.71 (6)N1—C7—N2113.37 (18)
N5—Ni1—N190.62 (8)N1—C7—H7123.3
N3—Ni1—N198.62 (7)N2—C7—H7123.3
O3i—Ni1—O1W92.03 (6)O2—C8—O1124.26 (18)
N5—Ni1—O1W92.56 (7)O2—C8—C1118.08 (18)
N3—Ni1—O1W169.42 (6)O1—C8—C1117.48 (17)
N1—Ni1—O1W89.19 (6)O4—C9—O3125.86 (19)
O3i—Ni1—O2W85.71 (6)O4—C9—C2118.28 (17)
N5—Ni1—O2W92.07 (7)O3—C9—C2115.85 (16)
N3—Ni1—O2W83.24 (7)N3—C10—C11122.1 (2)
N1—Ni1—O2W176.95 (6)N3—C10—H10119.0
O1W—Ni1—O2W89.27 (6)C11—C10—H10119.0
Ni1—O1W—H1W109.5C12—C11—C10119.2 (3)
Ni1—O1W—H2W98.3C12—C11—H11120.4
H1W—O1W—H2W109.2C10—C11—H11120.4
Ni1—O2W—H3W107.8C11—C12—C13120.7 (2)
Ni1—O2W—H4W102.0C11—C12—H12119.6
H3W—O2W—H4W110.4C13—C12—H12119.6
C9—O3—Ni1ii126.97 (12)C12—C13—C21116.6 (2)
C7—N1—C5104.75 (16)C12—C13—C14124.8 (3)
C7—N1—Ni1122.19 (14)C21—C13—C14118.6 (3)
C5—N1—Ni1133.06 (13)C15—C14—C13121.1 (3)
C7—N2—C4107.40 (17)C15—C14—H14119.5
C7—N2—H2126.3C13—C14—H14119.5
C4—N2—H2126.3C14—C15—C16121.8 (3)
C10—N3—C21118.60 (19)C14—C15—H15119.1
C10—N3—Ni1129.35 (15)C16—C15—H15119.1
C21—N3—Ni1112.04 (15)C17—C16—C15125.1 (3)
C19—N5—C20118.7 (2)C17—C16—C20116.3 (3)
C19—N5—Ni1128.25 (18)C15—C16—C20118.6 (3)
C20—N5—Ni1112.85 (15)C18—C17—C16121.1 (3)
C6—C1—C2121.47 (17)C18—C17—H17119.5
C6—C1—C8116.26 (16)C16—C17—H17119.5
C2—C1—C8122.22 (17)C17—C18—C19119.2 (3)
C3—C2—C1120.47 (18)C17—C18—H18120.4
C3—C2—C9118.32 (17)C19—C18—H18120.4
C1—C2—C9121.09 (16)N5—C19—C18122.2 (3)
C4—C3—C2117.13 (18)N5—C19—H19118.9
C4—C3—H3121.4C18—C19—H19118.9
C2—C3—H3121.4N5—C20—C16122.5 (2)
N2—C4—C3131.06 (18)N5—C20—C21117.47 (19)
N2—C4—C5105.66 (17)C16—C20—C21120.0 (2)
C3—C4—C5123.27 (18)N3—C21—C13122.9 (2)
N1—C5—C6131.99 (17)N3—C21—C20117.3 (2)
N1—C5—C4108.82 (16)C13—C21—C20119.8 (2)
C6—C5—C4119.16 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iii0.841.902.710 (2)163
O1W—H2W···O4i0.841.762.584 (2)165
O2W—H3W···O1iii0.841.872.703 (2)169
O2W—H4W···O1i0.842.112.932 (2)165
N2—H2···O2iv0.862.002.739 (2)144
N2—H2···O1iv0.862.543.355 (2)159
C10—H10···O2i0.932.563.346 (8)143
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H4N2O4)(C12H8N2)(H2O)2]
Mr479.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.021 (2), 16.980 (3), 15.327 (5)
β (°) 129.09 (2)
V3)2024.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.31 × 0.26 × 0.22
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.746, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
15765, 3639, 3195
Rint0.039
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.09
No. of reflections3639
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.841.902.710 (2)162.8
O1W—H2W···O4ii0.841.762.584 (2)164.6
O2W—H3W···O1i0.841.872.703 (2)168.9
O2W—H4W···O1ii0.842.112.932 (2)165.0
N2—H2···O2iii0.862.002.739 (2)143.8
N2—H2···O1iii0.862.543.355 (2)159.2
C10—H10···O2ii0.932.563.346 (8)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for support of this work.

References

First citationChesnut, D. J., Haushalter, R. C. & Zubieta, J. (1999). Inorg. Chim. Acta, 292, 41–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds