organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Cyclo­hexane-1,4-di­carboxylic acid

aFujian Provincial Key Laboratory for Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China
*Correspondence e-mail: yqwang@fjnu.edu.cn

(Received 8 March 2009; accepted 29 April 2009; online 14 May 2009)

In the title compound, C8H12O4, the two carboxyl groups are on the same side of the cyclohexane ring and the ring adopts a chair conformation. Adjacent mol­ecules related by an inversion centre are linked by pairs of O—H⋯O hydrogen bonds, forming a zigzag chain along [1[\overline{1}][\overline{1}]].

Related literature

For related structures, see: Bi et al. (2003[Bi, W., Cao, R., Sun, D., Yuan, D., Li, X. & Hong, M. (2003). Inorg. Chem. Commun. 6, 1426-1428.], 2004[Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104-2105.]); Chen et al. (2006[Chen, B., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des. 6, 825-828.]); Du et al. (2006[Du, M., Zhang, Z. & Zhao, X. (2006). Cryst. Growth Des. 6, 390-396.]); Dunitz & Strickler (1966[Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 2505-2515.]); Kurmoo et al. (2003[Kurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. (2003). Inorg. Chem. 42, 6709-6722.], 2006[Kurmoo, M., Kumagai, H., Akita-Tanaka, M., Inoue, K. & Takagi, S. (2006). Inorg. Chem. 45, 1627-1637.]); Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12O4

  • Mr = 172.18

  • Triclinic, [P \overline 1]

  • a = 5.2912 (6) Å

  • b = 6.2611 (6) Å

  • c = 13.1851 (18) Å

  • α = 82.505 (10)°

  • β = 80.309 (11)°

  • γ = 81.875 (10)°

  • V = 423.70 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.989

  • 9807 measured reflections

  • 1925 independent reflections

  • 1222 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.129

  • S = 1.05

  • 1925 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1i 0.88 (4) 1.81 (4) 2.684 (2) 178 (4)
O3—H8⋯O4ii 1.01 (4) 1.65 (4) 2.658 (2) 175 (4)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

According to the literatures, there are a few structures incorporating 1,4-cis-Cyclohexane dicarboxylic acid (Bi et al., 2004). Although the structures of its isomer in trans conformation have been described for more than 40 years (Dunitz & Strickler, 1996; Luger et al., 1972), the structure of the title compound, (I), has only been reported as a co-crystal by Du et al. (2006).

According to the results of single X-ray diffraction analysis, there is one complete molecule in the asymmetric unit, and the molecule is in a general position (Fig. 1). The geometry of the molecule is similar to the one observed by Du et al. (2006). The bond lengths are comparable to those in its isomers in trans conformations (Bi et al., 2003; Chen et al., 2006; Kurmoo et al., 2003, 2006).

Strong hydrogen bonds between two adjacent carboxylate groups link molecules into a zigzag chain along the [111] direction. The zigzag chains are packed into three-dimensional motif (Fig. 2).

Related literature top

For related structures, see: Bi et al. (2003, 2004); Chen et al. (2006); Du et al. (2006); Dunitz & Strickler (1966); Kurmoo et al. (2003, 2006); Luger et al. (1972).

Experimental top

C8H12O4 (1 mmol, 172 mg; mixture of trans- and cis-ACROS) was disloved into 50 ml of CD3OD. The solution was stirring and refluxing for 12 h, and the clear solution was allowed to evaporate slowly in the inert atmosphere. Nice plate crystals of the title compound were obtained after 5 days. The crystals were filtered, washed by cool EtOH and dried in the air.

Refinement top

H atoms on O atoms were located in a difference Fourier map and were refined freely. Other H atoms were refined as riding, with C—H = 0.97 or 0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram viewed down the b axis, The H-bonds are shown as dotted lines.
cis-Cyclohexane-1,4-dicarboxylic acid top
Crystal data top
C8H12O4Z = 2
Mr = 172.18F(000) = 184
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2912 (6) ÅCell parameters from 3560 reflections
b = 6.2611 (6) Åθ = 2.6–26.9°
c = 13.1851 (18) ŵ = 0.11 mm1
α = 82.505 (10)°T = 296 K
β = 80.309 (11)°Plate, colorless
γ = 81.875 (10)°0.24 × 0.20 × 0.10 mm
V = 423.70 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1925 independent reflections
Radiation source: fine-focus sealed tube1222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.979, Tmax = 0.989k = 78
9807 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.038P)2 + 0.2496P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1925 reflectionsΔρmax = 0.27 e Å3
118 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.057 (12)
Crystal data top
C8H12O4γ = 81.875 (10)°
Mr = 172.18V = 423.70 (9) Å3
Triclinic, P1Z = 2
a = 5.2912 (6) ÅMo Kα radiation
b = 6.2611 (6) ŵ = 0.11 mm1
c = 13.1851 (18) ÅT = 296 K
α = 82.505 (10)°0.24 × 0.20 × 0.10 mm
β = 80.309 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1222 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.989Rint = 0.038
9807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
1925 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4359 (3)0.5154 (3)0.88398 (12)0.0583 (5)
O20.2703 (4)0.2964 (3)1.01503 (13)0.0620 (5)
O30.7370 (4)0.1284 (3)0.57741 (15)0.0709 (6)
O40.8260 (3)0.2120 (3)0.55122 (14)0.0632 (5)
C10.2929 (4)0.3798 (3)0.91784 (16)0.0386 (5)
C20.1278 (4)0.2898 (4)0.85544 (16)0.0420 (5)
H20.04880.30210.89320.050*
C30.2176 (4)0.0476 (3)0.84796 (17)0.0457 (6)
H3A0.24100.02400.91610.055*
H3B0.08530.01740.82420.055*
C40.1185 (4)0.4153 (4)0.74843 (17)0.0493 (6)
H4A0.02640.37820.72080.059*
H4B0.08780.56940.75570.059*
C50.4695 (4)0.0121 (3)0.77409 (16)0.0411 (5)
H5A0.51750.14200.76940.049*
H5B0.60560.06640.80060.049*
C60.3638 (4)0.3713 (4)0.67093 (17)0.0457 (6)
H6A0.33500.43960.60280.055*
H6B0.50290.43460.69070.055*
C70.4420 (4)0.1286 (3)0.66664 (16)0.0411 (5)
H70.30280.07100.64230.049*
C80.6862 (4)0.0769 (4)0.59270 (16)0.0432 (5)
H10.369 (7)0.355 (6)1.048 (3)0.106 (12)*
H80.898 (8)0.163 (6)0.526 (3)0.128 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0785 (12)0.0610 (11)0.0431 (9)0.0335 (10)0.0145 (8)0.0002 (8)
O20.0795 (13)0.0717 (12)0.0413 (10)0.0360 (10)0.0111 (9)0.0020 (8)
O30.0759 (13)0.0525 (11)0.0741 (13)0.0054 (9)0.0251 (10)0.0191 (9)
O40.0571 (11)0.0595 (11)0.0685 (12)0.0124 (9)0.0167 (9)0.0190 (9)
C10.0371 (11)0.0377 (11)0.0396 (12)0.0004 (9)0.0016 (9)0.0091 (9)
C20.0299 (10)0.0512 (13)0.0452 (12)0.0048 (9)0.0017 (9)0.0163 (10)
C30.0454 (12)0.0447 (13)0.0476 (13)0.0145 (10)0.0045 (10)0.0131 (10)
C40.0422 (12)0.0544 (14)0.0531 (14)0.0066 (10)0.0150 (10)0.0168 (11)
C50.0437 (12)0.0358 (11)0.0422 (12)0.0034 (9)0.0003 (9)0.0084 (9)
C60.0490 (13)0.0490 (13)0.0378 (12)0.0017 (10)0.0098 (10)0.0038 (10)
C70.0377 (11)0.0491 (13)0.0383 (11)0.0058 (9)0.0051 (9)0.0122 (9)
C80.0450 (12)0.0483 (14)0.0366 (11)0.0024 (10)0.0057 (9)0.0097 (10)
Geometric parameters (Å, º) top
O1—C11.209 (2)C3—H3B0.9700
O2—C11.312 (3)C4—C61.527 (3)
O2—H10.88 (4)C4—H4A0.9700
O3—C81.310 (3)C4—H4B0.9700
O3—H81.01 (4)C5—C71.526 (3)
O4—C81.217 (3)C5—H5A0.9700
C1—C21.503 (3)C5—H5B0.9700
C2—C41.528 (3)C6—C71.523 (3)
C2—C31.534 (3)C6—H6A0.9700
C2—H20.9800C6—H6B0.9700
C3—C51.520 (3)C7—C81.505 (3)
C3—H3A0.9700C7—H70.9800
C1—O2—H1110 (2)H4A—C4—H4B107.6
C8—O3—H8114 (2)C3—C5—C7110.71 (18)
O1—C1—O2121.6 (2)C3—C5—H5A109.5
O1—C1—C2124.7 (2)C7—C5—H5A109.5
O2—C1—C2113.66 (19)C3—C5—H5B109.5
C1—C2—C4113.11 (18)C7—C5—H5B109.5
C1—C2—C3109.99 (18)H5A—C5—H5B108.1
C4—C2—C3111.41 (17)C7—C6—C4111.18 (19)
C1—C2—H2107.3C7—C6—H6A109.4
C4—C2—H2107.3C4—C6—H6A109.4
C3—C2—H2107.3C7—C6—H6B109.4
C5—C3—C2111.67 (17)C4—C6—H6B109.4
C5—C3—H3A109.3H6A—C6—H6B108.0
C2—C3—H3A109.3C8—C7—C6113.13 (18)
C5—C3—H3B109.3C8—C7—C5109.85 (18)
C2—C3—H3B109.3C6—C7—C5111.08 (17)
H3A—C3—H3B107.9C8—C7—H7107.5
C6—C4—C2114.13 (18)C6—C7—H7107.5
C6—C4—H4A108.7C5—C7—H7107.5
C2—C4—H4A108.7O4—C8—O3122.7 (2)
C6—C4—H4B108.7O4—C8—C7123.5 (2)
C2—C4—H4B108.7O3—C8—C7113.8 (2)
O1—C1—C2—C410.6 (3)C2—C4—C6—C751.0 (2)
O2—C1—C2—C4169.74 (18)C4—C6—C7—C8178.86 (18)
O1—C1—C2—C3114.7 (2)C4—C6—C7—C554.8 (2)
O2—C1—C2—C365.0 (2)C3—C5—C7—C8175.50 (17)
C1—C2—C3—C574.0 (2)C3—C5—C7—C658.6 (2)
C4—C2—C3—C552.3 (2)C6—C7—C8—O49.4 (3)
C1—C2—C4—C674.9 (2)C5—C7—C8—O4115.3 (2)
C3—C2—C4—C649.6 (2)C6—C7—C8—O3171.16 (19)
C2—C3—C5—C757.3 (2)C5—C7—C8—O364.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.88 (4)1.81 (4)2.684 (2)178 (4)
O3—H8···O4ii1.01 (4)1.65 (4)2.658 (2)175 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H12O4
Mr172.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2912 (6), 6.2611 (6), 13.1851 (18)
α, β, γ (°)82.505 (10), 80.309 (11), 81.875 (10)
V3)423.70 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9807, 1925, 1222
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.129, 1.05
No. of reflections1925
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.88 (4)1.81 (4)2.684 (2)178 (4)
O3—H8···O4ii1.01 (4)1.65 (4)2.658 (2)175 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors are grateful for funding support from the National Natural Science Foundation of China (20471015; 20874012) and the Foundation for Key Programs of the Ministry of Education, China (DB–O57).

References

First citationBi, W., Cao, R., Sun, D., Yuan, D., Li, X. & Hong, M. (2003). Inorg. Chem. Commun. 6, 1426–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104–2105.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des. 6, 825–828.  Web of Science CrossRef CAS Google Scholar
First citationDu, M., Zhang, Z. & Zhao, X. (2006). Cryst. Growth Des. 6, 390–396.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 2505–2515.  CSD CrossRef CAS Web of Science Google Scholar
First citationKurmoo, M., Kumagai, H., Akita-Tanaka, M., Inoue, K. & Takagi, S. (2006). Inorg. Chem. 45, 1627–1637.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. (2003). Inorg. Chem. 42, 6709–6722.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds