organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Tetra­zol-5-yl)pyridinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 14 April 2009; accepted 19 May 2009; online 23 May 2009)

In the cation of the title compound, C6H6N5+·Cl, the pyridinium and tetra­zole rings are nearly coplanar, making a dihedral angle of 5.05 (12)°. The cations and anions are connected by inter­molecular N—H⋯Cl hydrogen bonds, forming a centrosymmetric [2 + 2] aggregate. The aggregates are stacked along the a axis.

Related literature

For applications of tetra­zole derivatives in coordination chemistry, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For the crystal structures of related compounds, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·Cl

  • Mr = 183.61

  • Monoclinic, P 21 /c

  • a = 4.2741 (9) Å

  • b = 8.1992 (16) Å

  • c = 23.559 (5) Å

  • β = 94.72 (3)°

  • V = 822.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.883, Tmax = 0.921

  • 8164 measured reflections

  • 1862 independent reflections

  • 1431 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.03

  • 1862 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.25 3.0625 (18) 157
N2—H2⋯Cl1ii 0.86 2.23 3.0790 (18) 171
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, more and more people have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002; Wen, 2008). We report here the crystal structure of the title compound, 3-(1H-tetrazol-5-yl)pyridinium chloride.

In the title compound, the pyridine N atom is protonated (Fig.1). The pyridinium and the tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.05 (12) °. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang et al., 2005; Dai & Fu, 2008).

The crystal packing is stabilized by aromatic ππ interactions between the benzene rings of the neighbouring cation systems. The Cg···Cgiii distance is 4.274 (2) Å; Cg is the centroide of the C1—C6 benzene ring [symmetry code: (iii) x - 1, y, z]. The molecular packing is further stabilized by intermolecular N—H···Cl hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For applications of tetrazole derivatives in coordination chemistry, see: Xiong et al. (2002); Wang et al. (2005). For the crystal structures of related compounds, see: Dai & Fu (2008); Wen (2008).

Experimental top

Picolinonitrile (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/HCl (50:1 v/v) solution.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å (aromatic) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis showing the ππ and N—H···Cl interactions (dotted line) in the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-(1H-Tetrazol-5-yl)pyridinium chloride top
Crystal data top
C6H6N5+·ClF(000) = 376
Mr = 183.61Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1862 reflections
a = 4.2741 (9) Åθ = 3.0–27.3°
b = 8.1992 (16) ŵ = 0.41 mm1
c = 23.559 (5) ÅT = 298 K
β = 94.72 (3)°Block, colorless
V = 822.8 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1862 independent reflections
Radiation source: fine-focus sealed tube1431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.3°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.883, Tmax = 0.921l = 3030
8164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2136P]
where P = (Fo2 + 2Fc2)/3
1862 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H6N5+·ClV = 822.8 (3) Å3
Mr = 183.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.2741 (9) ŵ = 0.41 mm1
b = 8.1992 (16) ÅT = 298 K
c = 23.559 (5) Å0.30 × 0.25 × 0.20 mm
β = 94.72 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1862 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1431 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.921Rint = 0.041
8164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
1862 reflectionsΔρmin = 0.28 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08068 (11)0.24606 (6)0.463087 (19)0.04954 (18)
N10.4537 (4)0.72566 (17)0.43139 (6)0.0410 (4)
H1A0.54370.75210.46410.049*
N20.6191 (4)0.25335 (16)0.35565 (6)0.0389 (4)
H20.73890.26240.38670.047*
N30.5985 (4)0.12105 (19)0.32164 (7)0.0467 (4)
N40.3940 (4)0.1567 (2)0.27942 (7)0.0495 (4)
N50.2793 (4)0.31072 (19)0.28532 (7)0.0446 (4)
C10.5092 (4)0.5771 (2)0.41068 (7)0.0365 (4)
H10.64080.50500.43170.044*
C20.3697 (4)0.53090 (19)0.35769 (6)0.0307 (4)
C30.1717 (4)0.6434 (2)0.32759 (7)0.0373 (4)
H30.07510.61550.29210.045*
C40.1194 (5)0.7958 (2)0.35038 (8)0.0444 (5)
H40.01110.87040.33040.053*
C50.2639 (5)0.8356 (2)0.40346 (8)0.0465 (5)
H50.23010.93700.41960.056*
C60.4224 (4)0.3690 (2)0.33340 (7)0.0322 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0494 (3)0.0611 (3)0.0360 (3)0.0092 (2)0.0094 (2)0.0010 (2)
N10.0493 (9)0.0431 (9)0.0296 (8)0.0010 (7)0.0028 (7)0.0053 (6)
N20.0425 (8)0.0389 (8)0.0337 (8)0.0066 (6)0.0069 (6)0.0040 (6)
N30.0535 (9)0.0397 (9)0.0459 (9)0.0048 (7)0.0019 (7)0.0063 (7)
N40.0576 (10)0.0420 (9)0.0468 (9)0.0019 (7)0.0084 (8)0.0098 (7)
N50.0528 (9)0.0392 (8)0.0391 (8)0.0018 (7)0.0121 (7)0.0045 (7)
C10.0395 (9)0.0390 (9)0.0298 (8)0.0035 (7)0.0042 (7)0.0021 (7)
C20.0321 (8)0.0331 (8)0.0265 (8)0.0003 (7)0.0003 (6)0.0011 (6)
C30.0392 (9)0.0402 (9)0.0311 (8)0.0015 (7)0.0048 (7)0.0028 (7)
C40.0473 (11)0.0400 (10)0.0450 (11)0.0090 (8)0.0014 (9)0.0073 (8)
C50.0560 (12)0.0356 (10)0.0482 (11)0.0051 (9)0.0066 (9)0.0025 (9)
C60.0319 (8)0.0355 (9)0.0286 (8)0.0000 (7)0.0009 (6)0.0030 (7)
Geometric parameters (Å, º) top
N1—C11.340 (2)C1—C21.391 (2)
N1—C51.348 (2)C1—H10.9300
N1—H1A0.8600C2—C31.404 (2)
N2—C61.345 (2)C2—C61.470 (2)
N2—N31.347 (2)C3—C41.385 (3)
N2—H20.8600C3—H30.9300
N3—N41.302 (2)C4—C51.387 (3)
N4—N51.366 (2)C4—H40.9300
N5—C61.331 (2)C5—H50.9300
C1—N1—C5123.19 (15)C2—C3—H3119.8
C1—N1—H1A118.4N4—N3—N2106.29 (14)
C5—N1—H1A118.4C3—C4—C5119.18 (16)
N1—C1—C2119.91 (15)C3—C4—H4120.4
N1—C1—H1120.0C5—C4—H4120.4
C2—C1—H1120.0N3—N4—N5110.72 (14)
C1—C2—C3118.05 (16)C6—N5—N4105.96 (14)
C1—C2—C6121.81 (14)N1—C5—C4119.22 (17)
C3—C2—C6120.13 (14)N1—C5—H5120.4
C6—N2—N3109.14 (14)C4—C5—H5120.4
C6—N2—H2125.4N5—C6—N2107.90 (15)
N3—N2—H2125.4N5—C6—C2125.52 (15)
C4—C3—C2120.44 (16)N2—C6—C2126.58 (14)
C4—C3—H3119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.253.0625 (18)157
N2—H2···Cl1ii0.862.233.0790 (18)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N5+·Cl
Mr183.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.2741 (9), 8.1992 (16), 23.559 (5)
β (°) 94.72 (3)
V3)822.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.883, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
8164, 1862, 1431
Rint0.041
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections1862
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.253.0625 (18)157
N2—H2···Cl1ii0.862.233.0790 (18)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds