organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1287-o1288

Methyl trans-(±)-1-oxo-2-phenethyl-3-(thio­phen-2-yl)-1,2,3,4-tetra­hydro­iso­quinoline-4-carboxyl­ate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bFaculty of Chemistry, University of Sofia, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 28 April 2009; accepted 8 May 2009; online 14 May 2009)

In the title compound, C23H21NO3S, the piperidine ring of the tetra­hydro­isoquinolinone unit adopts a screw-boat conformation. The thio­phene ring is disordered in a 0.700 (3):0.300 (3) ratio by an approximate 180° rotation of the ring around the C—C bond linking the ring to the tetra­hydro­isoquinolinone unit. The benzene ring of the tetra­hydro­isoquinolinone unit makes dihedral angles of 83.1 (2) and 62.38 (11)° with the major occupancy thio­phene ring and the phenyl ring, respectively. The dihedral angle between the phenyl ring and the thio­phene ring is 71.0 (2)°. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the biological and pharmacological applications of compounds containing a tetra­hydro­isoquinoline fragment, see: Bogdanov et al. (2007[Bogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007). J. Heterocycl. Chem. 44, 673-677.]); Burdzhiev & Stanoeva (2006[Burdzhiev, N. T. & Stanoeva, E. R. (2006). Tetrahedron, 62, 8318-8326.]); Gitto et al. (2008[Gitto, R., Francica, E., De Sarro, G., Scicchitano, F. & Chimirri, A. (2008). Chem. Pharm. Bull. 56, 181-184.]); Humphries et al. (2009[Humphries, P. S., Benbow, J. W., Bonin, P. D., Boyer, D., Doran, S. D., Frisbie, R. K., Piotrowski, D. W., Balan, G., Bechle, B. M., Conn, E. L., Dirico, K. J., Oliver, R. M., Soeller, W. C., Southers, J. A. & Yang, X. (2009). Bioorg. Med. Chem. Lett. 19, 2400-2403.]); Kandinska et al. (2006[Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403-414.]); Rothweiler et al. (2008[Rothweiler, U., Czarna, A., Krajewski, M., Ciombor, J., Kalinski, C., Khazak, V., Ross, G., Skobeleva, N., Weber, L. & Holak, T. A. (2008). Chem. Med. Chem. 3, 1118-1128.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Akkurt et al. (2008[Akkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955-o1956.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21NO3S

  • Mr = 391.48

  • Monoclinic, P 21 /c

  • a = 8.8841 (3) Å

  • b = 30.7095 (13) Å

  • c = 7.5757 (3) Å

  • β = 105.472 (3)°

  • V = 1991.95 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.65 × 0.47 × 0.22 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.889, Tmax = 0.960

  • 13399 measured reflections

  • 3986 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.04

  • 3986 reflections

  • 273 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.57 3.401 (3) 149
C15—H15⋯O1ii 0.93 2.55 3.420 (3) 155
C3—H3⋯Cg1iii 0.93 2.78 3.688 (3) 165
C3—H3⋯Cg2iii 0.93 2.77 3.688 (4) 167
C19—H19⋯Cg3iv 0.93 2.89 3.692 (3) 145
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z. Cg1, Cg2 and Cg3 are centroids of the S1A/C12/C13A/C14/C15, S1B/C12/C13B/C14/C15 and C1–C6 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds containing tetrahydroisoquinoline fragment in their structure display a broad spectrum of biological activities. In particular, derivatives of this type have been recently recognized as being G-protein-coupled receptor 40 (GPR40) antagonists (Humphries et al.2009), inhibitors of the MDM2–p53 interaction (Rothweiler et al., 2008), potent anticonvulsant agents (Gitto et al., 2008), etc. Thus, the title compound (I) was synthesized as a part of our ongoing program related to anhydride-based synthesis of new heterocyclic compounds with potential pharmacological activities (Bogdanov et al., 2007; Burdzhiev & Stanoeva, 2006; Kandinska et al., 2006).

In the title molecule, (I), the thiophene ring is disordered over two sites and the major component of the disorder labelled with suffix A is shown in Fig. 1. The disorder corresponds to a rotation of approximately 180° rotation about the single C—C bond to which it is attached. All the bond lengths and angles of (I) are in normal ranges (Allen et al., 1987; Akkurt et al., 2008). The six-membered piperidine ring (N1/C1/C6–C9) of 3,4-dihydroisoquinolinone ring system adopts a screw-boat conformation, as shown with the Cremer–Pople puckering parameters [Cremer & Pople, 1975; QT = 0.4620 (18) Å, θ = 114.5 (2)° and ϕ = 90.8 (23)°]. The benzene ring (C1–C6) of 3,4-dihydroisoquinolinone ring system is essentially planar, with an r.m.s. deviation of 0.002 (2) Å for C2 and C5. This benzene ring makes dihedral angles of 83.1 (2), 83.1 (4) and 62.38 (11)°, with the thiophene rings A (C12/C13A/C14/C15/S1A) and B (C12/C13B/C14/C15/S1B), and the phenyl ring C (C18–C23), respectively. The dihedral angles between the phenyl ring C and the thiophene rings A and B are C/A = 71.0 (2) and C/B = 70.4 (4)°, respectively.

In the crystal structure, molecules are linked together by intermolecular C—H···O interactions (Table 1 and Fig. 2). The crystal structure is further stabilized by intermolecular C—H···π interactions (Table 1).

Related literature top

For background to the biological and pharmacological applications of compounds containing a tetrahydroisoquinoline fragment, see: Bogdanov et al. (2007); Burdzhiev & Stanoeva (2006); Gitto et al. (2008); Humphries et al. (2009); Kandinska et al. (2006); Rothweiler et al. (2008). For reference structural data, see: Allen et al. (1987); Akkurt et al. (2008). For ring conformations, see: Cremer & Pople (1975). Cg1, Cg2 and Cg3 are centroids of the S1A/C12/C13A/C14/C15, S1B/C12/C13B/C14/C15 and C1–C6 rings, respectively.

Experimental top

The title compound (I) was synthesized by esterification reaction of trans-1-oxo-2-phenethyl-3-(thiophen-2-yl)-1,2,3,4- tetrahydroisoquinoline-4-carboxylic acid (20 g, 0.053 mol) in the presence of H2SO4 (4.3 ml) in methanol. The reaction mixture was refluxed for 3 h. and then left over night. The colourless crystals were filtered and washed with water/methanol mixture yielding 18.6 g (90%) of (I). Single crystals were obtained by slow evaporation of a chloroform–ethyl acetate (3:1) solution of (I) at room temperature (mp 401–402 K). Analysis, calculated for C23H21NO3S (391.48): C 70.56, H 5.41 (%); found: C 70.24, H 5.38 (%). IR (CHCl3) 1650 cm-1 (CO), 1740 cm-1 (CO). The 1H NMR spectrum of (I) was obtained on a Bruker DRX-250 spectrometer at 250.13 MHz. Chemical shifts (δ) are expressed in parts per million (p.p.m.) from tetramethylsilane as an internal standard. 1H NMR (250 MHz, deuterochloroform) δ = 2.90–3.05 (2H, m, CH2-Phenyl), 3.18–3.30 (1H, m, CH2—N), 3.69 (1H, s, –OCH3), 4.05 (1H, s, H-4), 4.20–4.35 (1H, m, CH2—N), 5.60 (1H, s, H-3), 6.80 (2H, d, J = 5 Hz, H—Th), 7.10 (1H, d, J = 4 Hz, H—Th), 7.15–7.35 (7H, m, H—Ph), 7.45–7.55 (1H, m, H—Ph), 8.15–8.20 (1H, dd, H—Ph).

Refinement top

H atoms bound to C atoms were in geometrically generated positions and constrained to ride on their parent atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2 (1.5 for methyl groups) × Ueq(C)]. The ratio of the refined occupancies for the major and minor components of the disordered thiophene ring is 0.700 (3):0.300 (3). Rigid-bond restrains were applied to the disordered atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule, (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. The minor component of the disorder groups has been omitted.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the a axis. Dashed lines show intermolecular C—H···O interactions. H atoms not involved in hydrogen bonding and the minor component of the disorder groups have been omitted for clarity.
Methyl trans-(±)-1-oxo-2-phenethyl-3-(thiophen-2-yl)-1,2,3,4- tetrahydroisoquinoline-4-carboxylate top
Crystal data top
C23H21NO3SF(000) = 824
Mr = 391.48Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17858 reflections
a = 8.8841 (3) Åθ = 1.3–26.8°
b = 30.7095 (13) ŵ = 0.19 mm1
c = 7.5757 (3) ÅT = 296 K
β = 105.472 (3)°Block, colourless
V = 1991.95 (14) Å30.65 × 0.47 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3986 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3154 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 26.3°, θmin = 1.3°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3838
Tmin = 0.889, Tmax = 0.960l = 99
13399 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.315P]
where P = (Fo2 + 2Fc2)/3
3986 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.32 e Å3
36 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H21NO3SV = 1991.95 (14) Å3
Mr = 391.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8841 (3) ŵ = 0.19 mm1
b = 30.7095 (13) ÅT = 296 K
c = 7.5757 (3) Å0.65 × 0.47 × 0.22 mm
β = 105.472 (3)°
Data collection top
Stoe IPDS 2
diffractometer
3986 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3154 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.960Rint = 0.036
13399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04836 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3986 reflectionsΔρmin = 0.23 e Å3
273 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A1.0536 (2)0.02857 (4)0.7180 (2)0.0674 (4)0.700 (3)
O10.78832 (17)0.09928 (5)0.29160 (17)0.0760 (5)
O20.8929 (2)0.20317 (6)0.7118 (3)0.1030 (8)
O30.7137 (2)0.19259 (5)0.8557 (3)0.0992 (7)
N10.96104 (17)0.11653 (5)0.5600 (2)0.0562 (5)
C10.7254 (2)0.10320 (6)0.7433 (2)0.0546 (5)
C20.6148 (2)0.09167 (7)0.8347 (3)0.0645 (7)
C30.4866 (2)0.06686 (7)0.7463 (3)0.0725 (8)
C40.4676 (2)0.05369 (7)0.5666 (3)0.0729 (7)
C50.5759 (2)0.06508 (7)0.4751 (3)0.0656 (6)
C60.7055 (2)0.08982 (6)0.5626 (2)0.0547 (5)
C70.8209 (2)0.10222 (6)0.4600 (2)0.0568 (6)
C81.0051 (2)0.11775 (6)0.7606 (2)0.0547 (6)
C90.8651 (2)0.13115 (6)0.8298 (2)0.0563 (6)
C100.8276 (2)0.17975 (7)0.7885 (3)0.0637 (7)
C110.6610 (4)0.23722 (9)0.8144 (5)0.1154 (15)
C121.0783 (2)0.07522 (6)0.8414 (2)0.0532 (6)
C13A1.1728 (12)0.0660 (3)1.0108 (10)0.075 (2)0.700 (3)
C141.2240 (3)0.02237 (8)1.0421 (3)0.0779 (8)
C151.1645 (3)0.00027 (7)0.8887 (3)0.0750 (8)
C161.0833 (2)0.12589 (7)0.4683 (3)0.0639 (7)
C171.1146 (3)0.17379 (7)0.4507 (4)0.0815 (9)
C181.2171 (3)0.18088 (6)0.3240 (3)0.0651 (7)
C191.3667 (3)0.16428 (7)0.3613 (4)0.0816 (8)
C201.4523 (3)0.16691 (8)0.2327 (5)0.0933 (10)
C211.3917 (3)0.18710 (8)0.0716 (4)0.0912 (11)
C221.2473 (3)0.20540 (7)0.0333 (3)0.0835 (9)
C231.1594 (3)0.20202 (7)0.1584 (3)0.0717 (7)
S1B1.1881 (8)0.07244 (17)1.0566 (8)0.0679 (10)0.300 (3)
C13B1.076 (2)0.0343 (5)0.7659 (19)0.102 (6)0.300 (3)
H30.413000.059000.807800.0870*
H40.381200.037100.507900.0870*
H20.626900.100600.955000.0770*
H81.084700.140400.798800.0660*
H90.892100.126900.962800.0680*
H50.562600.056200.354500.0790*
H11B0.570800.242500.858300.1730*
H11C0.634600.241700.684300.1730*
H13A1.202000.087301.101000.0890*0.700 (3)
H141.287800.011201.150500.0930*
H151.184100.029200.878300.0900*
H16A1.053500.113100.346900.0770*
H16B1.179300.111900.536100.0770*
H17A1.016400.189000.403700.0980*
H17B1.165300.185600.570500.0980*
H191.410800.151200.474000.0980*
H201.551500.154700.257800.1120*
H211.449200.188500.014300.1100*
H221.207700.220100.076500.1000*
H231.059900.214100.130700.0860*
H11A0.743000.256900.873200.1730*
H13B1.022900.028500.644900.1210*0.300 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0741 (9)0.0596 (5)0.0629 (8)0.0032 (4)0.0084 (6)0.0080 (4)
O10.0754 (9)0.1048 (11)0.0480 (7)0.0044 (8)0.0169 (6)0.0042 (7)
O20.1119 (14)0.0757 (10)0.1406 (16)0.0198 (9)0.0672 (13)0.0246 (11)
O30.1201 (14)0.0686 (9)0.1341 (15)0.0215 (9)0.0780 (13)0.0070 (9)
N10.0536 (8)0.0661 (9)0.0515 (8)0.0010 (7)0.0186 (7)0.0004 (6)
C10.0504 (9)0.0610 (10)0.0527 (9)0.0077 (8)0.0143 (7)0.0026 (8)
C20.0594 (11)0.0758 (12)0.0622 (11)0.0094 (9)0.0231 (9)0.0077 (9)
C30.0590 (12)0.0774 (13)0.0877 (15)0.0054 (10)0.0309 (11)0.0170 (11)
C40.0544 (11)0.0699 (12)0.0913 (15)0.0040 (9)0.0142 (10)0.0013 (11)
C50.0591 (11)0.0673 (11)0.0670 (11)0.0009 (9)0.0111 (9)0.0068 (9)
C60.0516 (9)0.0590 (9)0.0529 (9)0.0039 (7)0.0131 (7)0.0001 (7)
C70.0572 (10)0.0628 (10)0.0505 (9)0.0053 (8)0.0146 (8)0.0006 (8)
C80.0514 (10)0.0591 (10)0.0532 (9)0.0018 (8)0.0133 (8)0.0052 (7)
C90.0557 (10)0.0636 (10)0.0499 (9)0.0058 (8)0.0144 (8)0.0057 (8)
C100.0642 (12)0.0695 (11)0.0599 (11)0.0055 (9)0.0211 (9)0.0057 (9)
C110.153 (3)0.0759 (16)0.143 (3)0.0394 (17)0.084 (2)0.0159 (16)
C120.0473 (9)0.0595 (10)0.0538 (10)0.0009 (7)0.0155 (8)0.0058 (8)
C13A0.082 (4)0.076 (3)0.066 (5)0.003 (2)0.020 (3)0.023 (3)
C140.0747 (14)0.0902 (15)0.0677 (13)0.0139 (12)0.0170 (11)0.0108 (11)
C150.0753 (13)0.0624 (11)0.0917 (15)0.0072 (10)0.0300 (12)0.0033 (11)
C160.0637 (12)0.0669 (11)0.0694 (12)0.0003 (9)0.0320 (10)0.0008 (9)
C170.1019 (18)0.0666 (12)0.0921 (16)0.0002 (11)0.0537 (14)0.0013 (11)
C180.0757 (13)0.0521 (9)0.0756 (12)0.0051 (9)0.0342 (11)0.0001 (9)
C190.0792 (15)0.0727 (13)0.0976 (16)0.0014 (11)0.0316 (13)0.0182 (12)
C200.0753 (15)0.0828 (15)0.135 (2)0.0008 (12)0.0510 (16)0.0135 (16)
C210.105 (2)0.0768 (14)0.111 (2)0.0185 (14)0.0625 (17)0.0020 (14)
C220.111 (2)0.0696 (13)0.0735 (14)0.0183 (13)0.0308 (13)0.0041 (11)
C230.0760 (13)0.0611 (11)0.0788 (13)0.0049 (10)0.0220 (11)0.0003 (10)
S1B0.0739 (16)0.0672 (17)0.057 (2)0.0128 (13)0.0078 (14)0.0085 (15)
C13B0.061 (6)0.167 (16)0.062 (8)0.032 (7)0.009 (5)0.011 (8)
Geometric parameters (Å, º) top
S1A—C121.693 (2)C18—C231.384 (3)
S1A—C151.649 (3)C18—C191.381 (4)
S1B—C141.580 (6)C19—C201.389 (4)
S1B—C121.664 (6)C20—C211.347 (4)
O1—C71.2339 (19)C21—C221.359 (4)
O2—C101.171 (3)C22—C231.383 (4)
O3—C111.455 (3)C2—H20.9300
O3—C101.309 (3)C3—H30.9300
N1—C71.347 (2)C4—H40.9300
N1—C81.465 (2)C5—H50.9300
N1—C161.466 (2)C8—H80.9800
C1—C21.390 (3)C9—H90.9800
C1—C91.508 (3)C11—H11A0.9600
C1—C61.395 (2)C11—H11B0.9600
C2—C31.385 (3)C11—H11C0.9600
C3—C41.387 (3)C13A—H13A0.9300
C4—C51.373 (3)C13B—H13B0.9300
C5—C61.391 (3)C14—H140.9300
C6—C71.492 (2)C15—H150.9300
C8—C121.514 (3)C16—H16A0.9700
C8—C91.529 (3)C16—H16B0.9700
C9—C101.543 (3)C17—H17B0.9700
C12—C13B1.379 (15)C17—H17A0.9700
C12—C13A1.363 (8)C19—H190.9300
C13A—C141.415 (10)C20—H200.9300
C13B—C151.478 (15)C21—H210.9300
C14—C151.328 (3)C22—H220.9300
C16—C171.510 (3)C23—H230.9300
C17—C181.505 (4)
S1A···N12.980 (2)C14···H3iii2.9700
S1A···C63.542 (2)C15···H3iii3.0400
S1A···C73.325 (2)C16···H193.0000
S1A···C163.584 (3)C17···H82.9100
S1A···S1Ai3.636 (2)C19···H16B2.8800
S1B···H16Aii3.0400C20···H11Bx3.0400
S1B···H3iii3.1200C21···H11Bxiii3.0700
S1B···H93.0400C21···H11Cx3.0300
O1···C15i3.420 (3)C22···H8iv2.8000
O1···C2iv3.401 (3)C23···H22xii3.0800
O2···N13.023 (2)H2···O1ii2.5700
O2···C173.269 (3)H2···H92.4800
O3···C23.214 (3)H3···C12v3.0900
O1···H20v2.6600H3···C15v3.0400
O1···H16A2.3200H3···S1Bv3.1200
O1···H15i2.5500H3···C13Bv3.0200
O1···H52.5500H3···C14v2.9700
O1···H2iv2.5700H3···C13Av2.9500
O2···H11C2.5400H5···O12.5500
O2···H11Avi2.8300H8···O22.5400
O2···H17A2.8600H8···H16B2.5200
O2···H11A2.6200H8···H17B2.4700
O2···H82.5400H8···C172.9100
O2···H22ii2.8800H8···C22ii2.8000
O3···H21vii2.7800H9···C13A3.0600
N1···O23.023 (2)H9···S1B3.0400
N1···S1A2.980 (2)H9···H22.4800
N1···H13B2.8000H11A···O22.6200
C2···O1ii3.401 (3)H11A···O2xii2.8300
C2···O33.214 (3)H11B···H21vii2.3200
C4···C4viii3.540 (3)H11B···C20ix3.0400
C5···C19v3.553 (3)H11B···C21vii3.0700
C6···C123.450 (2)H11B···H11Cxii2.4300
C6···S1A3.542 (2)H11C···C11vi2.9500
C7···S1A3.325 (2)H11C···O22.5400
C7···C13B3.472 (16)H11C···H11Bvi2.4300
C7···C103.433 (3)H11C···C21ix3.0300
C10···C73.433 (3)H13B···N12.8000
C10···C23ii3.550 (3)H13B···C72.9900
C11···C21ix3.487 (4)H14···C3xi3.0900
C11···C20ix3.446 (4)H15···O1i2.5500
C12···C63.450 (2)H15···C2xi3.0900
C13B···C73.472 (16)H16A···S1Biv3.0400
C15···O1i3.420 (3)H16A···O12.3200
C16···S1A3.584 (3)H16B···C3iii3.1000
C17···O23.269 (3)H16B···C4iii3.0800
C19···C5iii3.553 (3)H16B···C122.9200
C20···C11x3.446 (4)H16B···C192.8800
C21···C11x3.487 (4)H16B···H82.5200
C23···C10iv3.550 (3)H16B···H192.5300
C2···H15xi3.0900H17A···H232.3300
C3···H16Bv3.1000H17A···O22.8600
C3···H14xi3.0900H17B···C83.0900
C4···H16Bv3.0800H17B···H82.4700
C4···H19v3.0900H19···H16B2.5300
C5···H19v3.0200H19···C4iii3.0900
C6···H20v3.0800H19···C5iii3.0200
C7···H20v2.9500H19···C163.0000
C7···H13B2.9900H20···C6iii3.0800
C8···H17B3.0900H20···C7iii2.9500
C10···H23ii3.0400H20···O1iii2.6600
C11···H21vii2.9600H21···O3xiii2.7800
C11···H11Cxii2.9500H21···C11xiii2.9600
C12···H3iii3.0900H21···H11Bxiii2.3200
C12···H16B2.9200H22···C23vi3.0800
C13A···H93.0600H22···O2iv2.8800
C13A···H3iii2.9500H23···C10iv3.0400
C13B···H3iii3.0200H23···H17A2.3300
C12—S1A—C1592.90 (12)C1—C2—H2120.00
C12—S1B—C1493.3 (3)C3—C2—H2120.00
C10—O3—C11116.0 (2)C2—C3—H3120.00
C7—N1—C16119.22 (15)C4—C3—H3120.00
C8—N1—C16117.38 (15)C3—C4—H4120.00
C7—N1—C8122.88 (15)C5—C4—H4120.00
C2—C1—C6119.50 (17)C4—C5—H5120.00
C2—C1—C9122.53 (15)C6—C5—H5120.00
C6—C1—C9117.94 (15)N1—C8—H8107.00
C1—C2—C3119.89 (19)C9—C8—H8107.00
C2—C3—C4120.27 (18)C12—C8—H8107.00
C3—C4—C5120.22 (19)C1—C9—H9109.00
C4—C5—C6120.07 (19)C8—C9—H9109.00
C1—C6—C5120.05 (17)C10—C9—H9109.00
C1—C6—C7120.76 (16)O3—C11—H11A109.00
C5—C6—C7119.19 (15)O3—C11—H11B110.00
O1—C7—N1122.15 (17)O3—C11—H11C109.00
O1—C7—C6121.05 (16)H11A—C11—H11B109.00
N1—C7—C6116.80 (13)H11A—C11—H11C109.00
N1—C8—C12111.38 (14)H11B—C11—H11C109.00
C9—C8—C12113.24 (14)C12—C13A—H13A122.00
N1—C8—C9110.23 (14)C14—C13A—H13A122.00
C1—C9—C8110.38 (14)C12—C13B—H13B122.00
C1—C9—C10110.76 (15)C15—C13B—H13B122.00
C8—C9—C10110.01 (15)C13A—C14—H14126.00
O2—C10—O3123.0 (2)C15—C14—H14126.00
O2—C10—C9125.87 (19)S1B—C14—H14113.00
O3—C10—C9111.10 (17)S1A—C15—H15122.00
S1A—C12—C13A107.5 (4)C13B—C15—H15136.00
C8—C12—C13A130.6 (4)C14—C15—H15122.00
S1A—C12—C8121.91 (12)N1—C16—H16B109.00
C8—C12—C13B131.4 (6)N1—C16—H16A109.00
S1B—C12—C13B107.4 (7)H16A—C16—H16B108.00
S1B—C12—C8121.1 (2)C17—C16—H16A109.00
C12—C13A—C14116.4 (6)C17—C16—H16B109.00
C12—C13B—C15115.9 (10)C18—C17—H17A110.00
C13A—C14—C15107.6 (4)C18—C17—H17B110.00
S1B—C14—C15121.2 (3)H17A—C17—H17B108.00
C13B—C15—C14102.1 (6)C16—C17—H17A109.00
S1A—C15—C14115.60 (18)C16—C17—H17B109.00
N1—C16—C17114.22 (18)C18—C19—H19120.00
C16—C17—C18110.76 (19)C20—C19—H19120.00
C17—C18—C19122.0 (2)C19—C20—H20120.00
C19—C18—C23117.5 (2)C21—C20—H20120.00
C17—C18—C23120.4 (2)C22—C21—H21120.00
C18—C19—C20120.8 (3)C20—C21—H21120.00
C19—C20—C21120.1 (3)C21—C22—H22120.00
C20—C21—C22120.7 (3)C23—C22—H22120.00
C21—C22—C23119.7 (2)C22—C23—H23119.00
C18—C23—C22121.1 (2)C18—C23—H23119.00
C15—S1A—C12—C8178.77 (17)C5—C6—C7—O115.7 (3)
C12—S1A—C15—C140.3 (2)C5—C6—C7—N1164.20 (18)
C15—S1A—C12—C13A0.0 (5)C1—C6—C7—N116.6 (3)
C11—O3—C10—C9176.0 (2)N1—C8—C9—C1070.98 (18)
C11—O3—C10—O25.8 (4)C12—C8—C9—C173.97 (17)
C16—N1—C7—C6175.20 (16)C12—C8—C9—C10163.51 (14)
C8—N1—C7—C63.6 (3)N1—C8—C12—S1A19.2 (2)
C8—N1—C16—C1781.0 (2)N1—C8—C9—C151.54 (19)
C16—N1—C7—O14.7 (3)C9—C8—C12—C13A75.9 (6)
C7—N1—C16—C17107.0 (2)N1—C8—C12—C13A159.2 (6)
C7—N1—C8—C938.0 (2)C9—C8—C12—S1A105.70 (17)
C8—N1—C7—O1176.20 (17)C8—C9—C10—O21.7 (3)
C16—N1—C8—C1283.1 (2)C1—C9—C10—O2120.6 (2)
C16—N1—C8—C9150.35 (16)C8—C9—C10—O3176.42 (17)
C7—N1—C8—C1288.6 (2)C1—C9—C10—O361.3 (2)
C6—C1—C2—C30.4 (3)S1A—C12—C13A—C140.4 (8)
C9—C1—C6—C71.1 (3)C8—C12—C13A—C14179.0 (4)
C2—C1—C9—C8146.92 (17)C12—C13A—C14—C150.6 (9)
C2—C1—C9—C1091.0 (2)C13A—C14—C15—S1A0.6 (5)
C9—C1—C6—C5178.09 (17)N1—C16—C17—C18168.81 (19)
C9—C1—C2—C3178.27 (18)C16—C17—C18—C1961.7 (3)
C2—C1—C6—C50.1 (3)C16—C17—C18—C23113.8 (2)
C2—C1—C6—C7179.10 (17)C17—C18—C19—C20172.5 (2)
C6—C1—C9—C1086.9 (2)C23—C18—C19—C203.2 (3)
C6—C1—C9—C835.1 (2)C17—C18—C23—C22174.2 (2)
C1—C2—C3—C40.4 (3)C19—C18—C23—C221.5 (3)
C2—C3—C4—C50.1 (3)C18—C19—C20—C212.2 (4)
C3—C4—C5—C60.2 (3)C19—C20—C21—C220.5 (4)
C4—C5—C6—C10.2 (3)C20—C21—C22—C232.2 (4)
C4—C5—C6—C7179.38 (18)C21—C22—C23—C181.1 (3)
C1—C6—C7—O1163.54 (18)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x1, y, z; (vi) x, y+1/2, z1/2; (vii) x1, y, z+1; (viii) x+1, y, z+1; (ix) x1, y+1/2, z+1/2; (x) x+1, y+1/2, z1/2; (xi) x+2, y, z+2; (xii) x, y+1/2, z+1/2; (xiii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ii0.932.573.401 (3)149
C15—H15···O1i0.932.553.420 (3)155
C16—H16A···O10.972.322.731 (2)105
C3—H3···Cg1v0.932.783.688 (3)165
C3—H3···Cg2v0.932.773.688 (4)167
C19—H19···Cg3iii0.932.893.692 (3)145
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H21NO3S
Mr391.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.8841 (3), 30.7095 (13), 7.5757 (3)
β (°) 105.472 (3)
V3)1991.95 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.65 × 0.47 × 0.22
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.889, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13399, 3986, 3154
Rint0.036
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.04
No. of reflections3986
No. of parameters273
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.401 (3)149
C15—H15···O1ii0.932.553.420 (3)155
C3—H3···Cg1iii0.932.783.688 (3)165
C3—H3···Cg2iii0.932.773.688 (4)167
C19—H19···Cg3iv0.932.893.692 (3)145
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

References

First citationAkkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955–o1956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007). J. Heterocycl. Chem. 44, 673–677.  CrossRef CAS Google Scholar
First citationBurdzhiev, N. T. & Stanoeva, E. R. (2006). Tetrahedron, 62, 8318–8326.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGitto, R., Francica, E., De Sarro, G., Scicchitano, F. & Chimirri, A. (2008). Chem. Pharm. Bull. 56, 181–184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHumphries, P. S., Benbow, J. W., Bonin, P. D., Boyer, D., Doran, S. D., Frisbie, R. K., Piotrowski, D. W., Balan, G., Bechle, B. M., Conn, E. L., Dirico, K. J., Oliver, R. M., Soeller, W. C., Southers, J. A. & Yang, X. (2009). Bioorg. Med. Chem. Lett. 19, 2400–2403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403–414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRothweiler, U., Czarna, A., Krajewski, M., Ciombor, J., Kalinski, C., Khazak, V., Ross, G., Skobeleva, N., Weber, L. & Holak, T. A. (2008). Chem. Med. Chem. 3, 1118–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1287-o1288
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds