organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1294-o1295

7,7′,8,8′-Tetra­meth­­oxy-4,4′-di­methyl-3,3′-bicoumarin

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202002 (UP), India
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2009; accepted 8 May 2009; online 14 May 2009)

In the crystal structure, the title compound, C24H22O8, lies on a twofold rotation axis and the asymmetric unit comprises one half-mol­ecule. The dihedral angle formed by the coumarin unit with the symmetry-related part is 74.78 (14)°. One of the meth­oxy groups attached to the coumarin unit is considerably twisted, making an angle of 87.17 (17)° with respect to the coumarin unit; the other is twisted by 0.66 (19)°. No classical hydrogen bonds are found in the sturcture; only a weak C—H⋯π inter­action and short intra­molecular O⋯O contacts [2.683 (2)–2.701 (2) Å] are observed.

Related literature

For the biological activity of coumarins, see: El-Agrody et al. (2001[El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519-527.]); El-Farargy (1991[El-Farargy, A. F. (1991). Egypt. J. Pharm. Sci, 32, 625-625.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 3, 717-722.]); Ghate et al. (2005[Ghate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem. 40, 882-887.]); Laakso et al. (1994[Laakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod., 57, 128-133.]); Nofal et al. (2000[Nofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99-113.]); Pratibha & Shreeya (1999[Pratibha, S. & Shreeya, P. (1999). Indian J. Chem. 38B, 1139-1142.]); Shaker (1996[Shaker, R. M. (1996). Pharmazie, 51, 148-148.]); Yang et al. (2005[Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852-60.]). For the pharmaceutical properties of coumarin derivatives, see: Kennedy & Thornes (1997[Kennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. New York: John Wiley & Sons.]). For natural and synthetic coumarins, see: Carlton et al. (1996[Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145-151.]); Zhou et al. (2000[Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689-697.]). For related bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22O8

  • Mr = 438.42

  • Monoclinic, C 2/c

  • a = 21.715 (9) Å

  • b = 7.138 (3) Å

  • c = 15.511 (6) Å

  • β = 121.801 (5)°

  • V = 2043.3 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.28 × 0.19 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.994

  • 27961 measured reflections

  • 3527 independent reflections

  • 2710 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.155

  • S = 1.08

  • 3527 reflections

  • 189 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.96 (2) 2.86 (2) 3.676 (2) 143.5 (18)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}]. Cg1 is the centroid of the C4–C9 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are a large group of naturally occurring oxygen heterocycles representing 2H-1-benzopyran-2-one derivative. Many natural coumarins are reputed for their wide range of biological activites such as antibacterial (El-Agrody et al., 2001; Pratibha & Shreeya, 1999), antifungal (Shaker, 1996; El-Farargy, 1991), antioxidant (Yang et al., 2005), analgesic (Ghate et al., 2005), anti-inflammatory (Emmanuel-Giota et al., 2001) and antitumor (Nofal et al., 2000) properties. Bi and tri-coumarins are comparatively new groups which are widely spread in nature and their biological properties are also well known (Laakso et al., 1994). One of the characteristic pharmacological properties of coumarin derivatives is the anticoagulant action (Kennedy & Thornes, 1997). A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. Keeping in view of these biological importance of coumarins and their dimers, we have synthesized the title compound (I) and report here its structure.

The asymmetric unit of (I) (Fig. 1), contains half of the 7,7',8,8'-4,4'-dimethyl-3,3'-bicoumarin molecule. The other half is symmetry generated [symmetry code: -x, y, -z + 1/2]. The coumarin unit is planar with the maximum deviation from the mean plane of 0.0295 (15) Å for atom C2. One of the methyl group attached to the coumarin unit is twisted as evidenced by the torsion angle of C10—O3—C8—C9 = 87.17 (17)°. The dihedral angle formed by the coumarin unit (O1/C1—C9) with the symmetry related coumarin unit (O1A/C1A—C9A) is 74.78 (14)°, indicating that they are almost perpendicular to each other. The bond lengths (Allen et al., 1987) and bond angles are normal.

The crystal packing (Fig. 2) (Table 1) is stabilized by weak C—H···π interactions and intramolecular O···O = 2.683 (2) to 2.701 (2) Å short contacts.

Related literature top

For thebiological activity of coumarin, see: El-Agrody et al. (2001); El-Farargy (1991); Emmanuel-Giota et al. (2001); Ghate et al. (2005); Laakso et al. (1994); Nofal et al. (2000); Pratibha & Shreeya (1999); Shaker (1996); Yang et al. (2005). For the pharmaceutical properties of coumarin derivatives, see: Kennedy & Thornes (1997). For natural and synthetic coumarins, see: Carlton et al. (1996); Zhou et al. (2000). For related bond-length data, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C4–C9 ring.

Experimental top

A mixture of 7,8-dimethoxy-4-methyl coumarin (2.20 g, 10 mmol) and manganese(III) acetate (0.774 g, 1 mmol) was stirred at room temperature, then 70% perchloric acid (0.8 g, 6 mmol) was added. The reaction mixture was heated under reflux at 114°C with stirring in the atmosphere of nitrogen for 3 h. The reaction mixture was cooled and diluted with 50 ml of benzene. The benzene solution was washed with water and aq. NaHCO3, dried over anhydrous Na2SO4 and left to evaporate. The residue showed two major compounds which were separated by column chromatography followed by preparative thin layer chromatography (Benzene: EtOAc, 9:1) into the title compound (I) (260 mg, 12%).

Refinement top

All the hydrogen atoms were located from the Fourier map and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. [Symmetry code: -x, y, -z + 1/2 to generate equivalent atoms].
[Figure 2] Fig. 2. The crystal packing of (I). Molecules are stacked along the b axis.
(I) top
Crystal data top
C24H22O8F(000) = 920
Mr = 438.42Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6562 reflections
a = 21.715 (9) Åθ = 2.7–31.8°
b = 7.138 (3) ŵ = 0.11 mm1
c = 15.511 (6) ÅT = 100 K
β = 121.801 (5)°Plate, colourless
V = 2043.3 (14) Å30.28 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3527 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 32.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3232
Tmin = 0.971, Tmax = 0.994k = 1010
27961 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0752P)2 + 1.2567P]
where P = (Fo2 + 2Fc2)/3
3527 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H22O8V = 2043.3 (14) Å3
Mr = 438.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.715 (9) ŵ = 0.11 mm1
b = 7.138 (3) ÅT = 100 K
c = 15.511 (6) Å0.28 × 0.19 × 0.06 mm
β = 121.801 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2710 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.065
27961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.155All H-atom parameters refined
S = 1.08Δρmax = 0.50 e Å3
3527 reflectionsΔρmin = 0.21 e Å3
189 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15443 (5)0.04445 (13)0.38705 (7)0.0178 (2)
O20.05473 (6)0.06775 (15)0.37300 (8)0.0242 (2)
O30.30066 (5)0.03278 (14)0.48961 (7)0.0212 (2)
O40.37511 (5)0.26053 (15)0.43926 (8)0.0221 (2)
C10.08045 (7)0.05014 (19)0.34517 (10)0.0175 (3)
C20.03949 (7)0.19639 (19)0.27048 (10)0.0163 (3)
C30.07228 (7)0.32194 (19)0.24158 (10)0.0168 (3)
C40.15015 (7)0.31354 (18)0.28870 (10)0.0161 (3)
C50.19034 (8)0.44106 (19)0.26927 (10)0.0185 (3)
C60.26498 (8)0.42852 (19)0.31768 (11)0.0194 (3)
C70.30199 (7)0.28719 (19)0.38881 (10)0.0174 (3)
C80.26401 (7)0.15966 (18)0.41265 (9)0.0164 (3)
C90.18892 (7)0.17416 (18)0.36139 (10)0.0154 (2)
C100.30773 (13)0.1493 (2)0.45770 (15)0.0362 (4)
C110.41539 (8)0.3869 (2)0.41549 (13)0.0267 (3)
C120.02974 (8)0.4697 (2)0.16315 (12)0.0247 (3)
H50.1654 (10)0.540 (3)0.2226 (15)0.024 (5)*
H60.2908 (11)0.516 (3)0.3016 (16)0.033 (5)*
H10A0.3396 (14)0.139 (4)0.429 (2)0.063 (8)*
H10B0.3324 (13)0.224 (3)0.514 (2)0.046 (6)*
H10C0.2573 (16)0.202 (4)0.410 (2)0.067 (8)*
H11A0.3985 (12)0.382 (3)0.3405 (19)0.044 (6)*
H11B0.4125 (11)0.519 (3)0.4338 (15)0.028 (5)*
H11C0.4642 (10)0.340 (3)0.4535 (14)0.022 (4)*
H12A0.0472 (11)0.483 (3)0.1149 (17)0.035 (5)*
H12B0.0359 (12)0.591 (3)0.1955 (18)0.041 (6)*
H12C0.0217 (12)0.440 (3)0.1264 (17)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0162 (5)0.0193 (5)0.0163 (4)0.0013 (3)0.0074 (4)0.0050 (4)
O20.0213 (5)0.0253 (5)0.0244 (5)0.0003 (4)0.0111 (4)0.0083 (4)
O30.0217 (5)0.0219 (5)0.0134 (4)0.0047 (4)0.0048 (4)0.0029 (4)
O40.0144 (5)0.0250 (5)0.0230 (5)0.0015 (4)0.0071 (4)0.0020 (4)
C10.0167 (6)0.0199 (6)0.0149 (6)0.0003 (5)0.0076 (5)0.0008 (5)
C20.0155 (6)0.0179 (6)0.0140 (6)0.0004 (4)0.0067 (5)0.0003 (4)
C30.0166 (6)0.0176 (6)0.0145 (6)0.0013 (4)0.0071 (5)0.0018 (4)
C40.0166 (6)0.0174 (6)0.0133 (5)0.0013 (4)0.0072 (5)0.0009 (4)
C50.0199 (6)0.0185 (6)0.0165 (6)0.0007 (5)0.0091 (5)0.0027 (5)
C60.0202 (6)0.0200 (6)0.0186 (6)0.0016 (5)0.0106 (5)0.0002 (5)
C70.0142 (6)0.0211 (6)0.0143 (6)0.0007 (4)0.0058 (5)0.0037 (5)
C80.0168 (6)0.0176 (6)0.0108 (5)0.0018 (4)0.0045 (5)0.0003 (4)
C90.0175 (6)0.0155 (6)0.0125 (5)0.0012 (4)0.0075 (5)0.0006 (4)
C100.0564 (12)0.0239 (8)0.0302 (9)0.0173 (8)0.0241 (9)0.0093 (7)
C110.0188 (7)0.0267 (8)0.0339 (8)0.0059 (6)0.0134 (6)0.0047 (6)
C120.0183 (7)0.0265 (7)0.0254 (7)0.0030 (5)0.0089 (6)0.0112 (6)
Geometric parameters (Å, º) top
O1—C91.3750 (16)C5—H50.952 (19)
O1—C11.3801 (17)C6—C71.395 (2)
O2—C11.2085 (17)C6—H60.96 (2)
O3—C81.3701 (16)C7—C81.4025 (19)
O3—C101.428 (2)C8—C91.3912 (19)
O4—C71.3640 (17)C10—H10A1.01 (3)
O4—C111.4334 (19)C10—H10B0.92 (3)
C1—C21.4618 (19)C10—H10C1.02 (3)
C2—C31.3592 (19)C11—H11A1.02 (2)
C2—C2i1.482 (3)C11—H11B1.00 (2)
C3—C41.4472 (19)C11—H11C0.963 (19)
C3—C121.5036 (19)C12—H12A1.01 (2)
C4—C51.3993 (19)C12—H12B0.97 (2)
C4—C91.4034 (18)C12—H12C0.97 (2)
C5—C61.384 (2)
C9—O1—C1121.36 (10)O3—C8—C9121.00 (12)
C8—O3—C10114.77 (12)O3—C8—C7120.42 (12)
C7—O4—C11116.63 (12)C9—C8—C7118.42 (12)
O2—C1—O1116.99 (12)O1—C9—C8115.95 (11)
O2—C1—C2125.28 (13)O1—C9—C4121.49 (12)
O1—C1—C2117.72 (11)C8—C9—C4122.56 (12)
C3—C2—C1121.77 (12)O3—C10—H10A108.3 (16)
C3—C2—C2i123.20 (11)O3—C10—H10B108.3 (15)
C1—C2—C2i115.03 (10)H10A—C10—H10B106 (2)
C2—C3—C4118.80 (12)O3—C10—H10C108.6 (16)
C2—C3—C12121.60 (13)H10A—C10—H10C115 (2)
C4—C3—C12119.59 (12)H10B—C10—H10C110 (2)
C5—C4—C9117.13 (12)O4—C11—H11A111.7 (13)
C5—C4—C3124.03 (12)O4—C11—H11B112.6 (11)
C9—C4—C3118.80 (12)H11A—C11—H11B108.8 (17)
C6—C5—C4121.74 (13)O4—C11—H11C104.2 (11)
C6—C5—H5119.7 (11)H11A—C11—H11C107.7 (16)
C4—C5—H5118.6 (11)H11B—C11—H11C111.8 (16)
C5—C6—C7119.83 (13)C3—C12—H12A111.0 (12)
C5—C6—H6119.7 (13)C3—C12—H12B110.3 (14)
C7—C6—H6120.5 (13)H12A—C12—H12B107.2 (17)
O4—C7—C6124.46 (12)C3—C12—H12C110.3 (12)
O4—C7—C8115.26 (12)H12A—C12—H12C110.5 (18)
C6—C7—C8120.28 (13)H12B—C12—H12C107.4 (17)
C9—O1—C1—O2179.03 (12)C5—C6—C7—O4178.75 (12)
C9—O1—C1—C21.45 (18)C5—C6—C7—C81.0 (2)
O2—C1—C2—C3178.65 (14)C10—O3—C8—C987.17 (17)
O1—C1—C2—C30.83 (19)C10—O3—C8—C797.47 (17)
O2—C1—C2—C2i1.3 (2)O4—C7—C8—O36.82 (18)
O1—C1—C2—C2i179.20 (11)C6—C7—C8—O3173.39 (12)
C1—C2—C3—C42.0 (2)O4—C7—C8—C9177.70 (11)
C2i—C2—C3—C4178.01 (13)C6—C7—C8—C92.09 (19)
C1—C2—C3—C12178.72 (13)C1—O1—C9—C8176.73 (11)
C2i—C2—C3—C121.3 (2)C1—O1—C9—C42.48 (18)
C2—C3—C4—C5176.43 (13)O3—C8—C9—O15.18 (18)
C12—C3—C4—C52.8 (2)C7—C8—C9—O1179.37 (11)
C2—C3—C4—C91.01 (19)O3—C8—C9—C4174.02 (12)
C12—C3—C4—C9179.71 (13)C7—C8—C9—C41.42 (19)
C9—C4—C5—C61.4 (2)C5—C4—C9—O1178.84 (11)
C3—C4—C5—C6178.94 (13)C3—C4—C9—O11.22 (19)
C4—C5—C6—C70.8 (2)C5—C4—C9—C80.32 (19)
C11—O4—C7—C60.66 (19)C3—C4—C9—C8177.94 (12)
C11—O4—C7—C8179.12 (12)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1ii0.96 (2)2.86 (2)3.676 (2)143.5 (18)
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC24H22O8
Mr438.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.715 (9), 7.138 (3), 15.511 (6)
β (°) 121.801 (5)
V3)2043.3 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.19 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
27961, 3527, 2710
Rint0.065
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.08
No. of reflections3527
No. of parameters189
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.96 (2)2.86 (2)3.676 (2)143.5 (18)
Symmetry code: (i) x, y, z1/2.
 

Footnotes

Thomson Reuters Researcher ID: A-3561-2009.

§Thomson Reuters Researcher ID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145–151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527.  Web of Science CrossRef CAS Google Scholar
First citationEl-Farargy, A. F. (1991). Egypt. J. Pharm. Sci, 32, 625–625.  CAS Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 3, 717–722.  Google Scholar
First citationGhate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem. 40, 882–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. New York: John Wiley & Sons.  Google Scholar
First citationLaakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod., 57, 128–133.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99–113.  Web of Science CrossRef CAS Google Scholar
First citationPratibha, S. & Shreeya, P. (1999). Indian J. Chem. 38B, 1139–1142.  Google Scholar
First citationShaker, R. M. (1996). Pharmazie, 51, 148–148.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1294-o1295
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds