organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,7-Tri­methyl-2,3-di­hydro­quinazolin-4(1H)-one

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 1 April 2009; accepted 15 May 2009; online 20 May 2009)

There are two independent mol­ecules in the the asymmetric unit of the title compound, C11H14N2O. The heterocyclic ring of the bicyclic system has a sofa conformation, with the C atom bearing the two methyl groups displaced by 0.541 (7) Å from the rest of the atoms of the ring [planar to within 0.064 (9) Å]. Mol­ecules are linked into centrosymmetric dimers via N—H⋯O hydrogen bonds.

Related literature

For medicinal and biological properties of dihydro­quinazolin-4(3H)-one derivatives, see: Jackson et al. (2007[Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107-117.]); Shi et al. (2004[Shi, D. Q., Rong, L. C., Wang, J. X., Wang, X. S., Tu, S. J. & Hu, H. W. (2004). Chem. J. Chin. Univ. 25, 2051-2053.]). For a related structure, see: Zhang et al. (2008[Zhang, L., Li, J., Shi, D., Zhang, L. & Fan, Y. (2008). Acta Cryst. E64, o448.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O

  • Mr = 190.24

  • Orthorhombic, P b c a

  • a = 19.538 (4) Å

  • b = 10.104 (2) Å

  • c = 20.735 (4) Å

  • V = 4093.4 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.986, Tmax = 0.990

  • 31345 measured reflections

  • 3599 independent reflections

  • 3269 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.07

  • 3599 reflections

  • 274 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.891 (9) 2.221 (10) 3.0917 (16) 165.7 (14)
N2—H2⋯O2 0.901 (9) 2.029 (10) 2.9144 (15) 167.2 (16)
N4—H4⋯O1 0.897 (9) 1.956 (10) 2.8488 (16) 173.3 (18)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of dihydroquinazolin-4(3H)-one are valuable synthetic intermediates featuring common structural motif found in a variety of compounds with interesting medicinal and biological properties (Shi et al., 2004; Jackson et al., 2007).

In the molecule of the title compound (Fig. 1), the 1,3-diazacyclohexane moiety of the bicyclic system has a sofa conformation with the C8 atom displaced by 0.541 (7) Å from the rest of the atoms of the 1,3-diazacyclohexane ring (planar within 0.064 (9) Å). The dihedral angle between C8, C9, C10 plane and the plane (N1, N2, C8) is 89.8 (3)°.

Molecules in crystal are linked into centrosymmetric dimers via N2—H2···O2i bonds (N2—H2 0.901 (9) Å, H2···O2i 2.029 (10) Å, N2—H2···O2i 167.2 (16)°) and N4—H4···O1i bonds (N4—H4 0.897 (9) Å, H4···O1i 1.956 (10) Å, N4—H4···O1i 173.3 (18)°)(Fig. 2).

The molecular geometry and overall crystal structure of the title compound are quite similar to those observed in the structure of its close analog which lacks the methyl substituent in position 6 of the tetrahydroquinalazolinone system (Shi et al., 2003).

Related literature top

For medicinal and biological properties of dihydroquinazolin-4(3H)-one derivatives, see: Jackson et al. (2007); Shi et al. (2004). For a related structure, see: Shi et al. (2003). [Please check rephrasing]

Experimental top

A solution of 2-amino-5-methylbenzonitrile (10 mmol) and sodium methylate (10 mmol) in acetone (10 ml), was refluxed for 2 h. The reaction mixture was cooled, to room temperature and poured into 20 ml of water (previously cooled to 20°); then it was extracted with ethyl acetate, distilled off ethyl acetate to give the title compound. The product was recrystallizated from ethanol and ethyl acetate to give colorless crystalline powder. m.p. 539–540 K; IR (KBr): 3300 (N—H), 3036, 2972 (C—H), 1642 (CO) cm-1; 1H-NMR (CDCl3, p.p.m.): 1.54 (6H, s), 2.29 (3H, s) 5.89 (1H, s), 6.66 (1H, s), 7.26 (1H, d), 7.78 (1H, d), 8.19 (1H, br). 50 mg of the obtained product was dissolved in ethyl acetate (5 ml) and the solution was kept at room temperature for 4 d to give colorless single crystals.

Refinement top

C—H were included in the riding model approximation with C—H distances 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C)(methyl). H atoms of NH group were located in difference Fourrier maps with N—H distances 0.891–0.901 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis
2,2,7-Trimethyl-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C11H14N2ODx = 1.235 Mg m3
Mr = 190.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 11344 reflections
a = 19.538 (4) Åθ = 2.0–27.9°
b = 10.104 (2) ŵ = 0.08 mm1
c = 20.735 (4) ÅT = 113 K
V = 4093.4 (14) Å3Rhombic, colourless
Z = 160.18 × 0.16 × 0.12 mm
F(000) = 1632
Data collection top
Rigaku Saturn
diffractometer
3599 independent reflections
Radiation source: rotating anode3269 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 2320
Tmin = 0.986, Tmax = 0.990k = 1212
31345 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0707P)2 + 1.3149P]
where P = (Fo2 + 2Fc2)/3
3599 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.26 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H14N2OV = 4093.4 (14) Å3
Mr = 190.24Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 19.538 (4) ŵ = 0.08 mm1
b = 10.104 (2) ÅT = 113 K
c = 20.735 (4) Å0.18 × 0.16 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
3599 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3269 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.037
31345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
3599 reflectionsΔρmin = 0.27 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12627 (5)0.35620 (10)0.25627 (5)0.0229 (2)
O20.12436 (5)0.41999 (10)0.08661 (5)0.0217 (2)
N10.01899 (6)0.63561 (12)0.26515 (5)0.0207 (3)
N20.05728 (6)0.50293 (12)0.20547 (6)0.0205 (3)
N30.27303 (6)0.14582 (12)0.08958 (6)0.0217 (3)
N40.18129 (6)0.25660 (11)0.13865 (6)0.0198 (3)
C10.01921 (7)0.61666 (14)0.32076 (6)0.0191 (3)
C20.00343 (7)0.67890 (14)0.37919 (7)0.0231 (3)
H2A0.03250.73920.38070.028*
C30.04036 (8)0.65240 (15)0.43478 (7)0.0265 (3)
C40.09473 (8)0.56177 (16)0.43222 (7)0.0283 (3)
H4A0.12010.54400.46920.034*
C50.11057 (8)0.49918 (15)0.37522 (7)0.0241 (3)
H50.14640.43860.37400.029*
C60.07354 (7)0.52554 (13)0.31920 (6)0.0189 (3)
C70.08837 (7)0.45605 (13)0.25853 (6)0.0187 (3)
C80.01727 (7)0.62612 (14)0.20330 (6)0.0195 (3)
C90.03515 (8)0.61367 (16)0.14934 (7)0.0283 (4)
H9A0.06450.53940.15770.043*
H9B0.01190.60080.10900.043*
H9C0.06210.69300.14730.043*
C100.06439 (7)0.74473 (15)0.19217 (7)0.0246 (3)
H10A0.03740.82370.18830.037*
H10B0.09010.73150.15330.037*
H10C0.09520.75340.22800.037*
C110.02288 (9)0.72142 (19)0.49722 (7)0.0377 (4)
H11A0.00500.79750.48830.057*
H11B0.06430.74900.51830.057*
H11C0.00170.66170.52480.057*
C120.25326 (7)0.19204 (14)0.02964 (6)0.0197 (3)
C130.28991 (7)0.16131 (14)0.02662 (7)0.0230 (3)
H130.32860.10790.02380.028*
C140.26961 (7)0.20891 (15)0.08615 (7)0.0236 (3)
C150.21162 (7)0.29057 (15)0.09035 (7)0.0236 (3)
H150.19710.32180.13030.028*
C160.17618 (7)0.32435 (14)0.03528 (7)0.0219 (3)
H160.13820.37960.03830.026*
C170.19642 (7)0.27684 (14)0.02505 (7)0.0194 (3)
C180.16363 (7)0.32180 (13)0.08495 (6)0.0188 (3)
C190.21890 (7)0.13021 (14)0.13797 (7)0.0200 (3)
C200.16986 (8)0.01709 (14)0.12152 (7)0.0253 (3)
H20A0.13420.01310.15330.038*
H20B0.19450.06510.12120.038*
H20C0.15010.03220.07980.038*
C210.25077 (8)0.10928 (16)0.20382 (7)0.0280 (3)
H21A0.28080.18180.21350.042*
H21B0.27630.02810.20380.042*
H21C0.21530.10470.23580.042*
C220.30798 (8)0.17113 (17)0.14637 (7)0.0321 (4)
H22A0.33350.24600.16170.048*
H22B0.27610.14360.17890.048*
H22C0.33880.09980.13690.048*
H10.0488 (7)0.7022 (12)0.2664 (8)0.024 (4)*
H20.0715 (9)0.4736 (18)0.1667 (6)0.037 (5)*
H30.3037 (7)0.0800 (13)0.0885 (8)0.029 (4)*
H40.1643 (9)0.2814 (18)0.1770 (6)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (5)0.0182 (5)0.0248 (5)0.0048 (4)0.0029 (4)0.0006 (4)
O20.0206 (5)0.0185 (5)0.0261 (5)0.0038 (4)0.0035 (4)0.0001 (4)
N10.0172 (6)0.0233 (7)0.0214 (6)0.0043 (5)0.0014 (5)0.0003 (5)
N20.0229 (6)0.0203 (6)0.0182 (6)0.0025 (5)0.0011 (5)0.0018 (5)
N30.0178 (6)0.0224 (7)0.0247 (6)0.0043 (5)0.0010 (5)0.0004 (5)
N40.0205 (6)0.0187 (6)0.0201 (6)0.0014 (5)0.0013 (5)0.0017 (5)
C10.0174 (7)0.0181 (7)0.0217 (7)0.0025 (5)0.0015 (5)0.0020 (5)
C20.0211 (7)0.0227 (8)0.0256 (7)0.0006 (6)0.0037 (6)0.0015 (6)
C30.0291 (8)0.0280 (8)0.0223 (7)0.0032 (6)0.0042 (6)0.0024 (6)
C40.0337 (8)0.0324 (9)0.0189 (7)0.0014 (7)0.0050 (6)0.0035 (6)
C50.0257 (8)0.0207 (7)0.0259 (8)0.0026 (6)0.0009 (6)0.0037 (6)
C60.0185 (7)0.0166 (7)0.0215 (7)0.0018 (5)0.0016 (5)0.0004 (5)
C70.0168 (7)0.0162 (7)0.0229 (7)0.0033 (5)0.0022 (5)0.0012 (5)
C80.0184 (7)0.0209 (7)0.0193 (7)0.0026 (5)0.0001 (5)0.0005 (5)
C90.0255 (8)0.0347 (9)0.0247 (8)0.0010 (6)0.0044 (6)0.0001 (6)
C100.0230 (7)0.0237 (8)0.0272 (7)0.0014 (6)0.0020 (6)0.0038 (6)
C110.0422 (10)0.0467 (11)0.0241 (8)0.0014 (8)0.0030 (7)0.0076 (7)
C120.0191 (7)0.0158 (7)0.0244 (7)0.0028 (5)0.0003 (6)0.0020 (5)
C130.0203 (7)0.0200 (7)0.0288 (8)0.0015 (6)0.0037 (6)0.0019 (6)
C140.0253 (7)0.0202 (7)0.0252 (7)0.0048 (6)0.0048 (6)0.0022 (6)
C150.0266 (7)0.0222 (8)0.0221 (7)0.0032 (6)0.0025 (6)0.0013 (6)
C160.0207 (7)0.0184 (7)0.0265 (7)0.0008 (5)0.0008 (6)0.0002 (6)
C170.0179 (7)0.0169 (7)0.0233 (7)0.0018 (5)0.0004 (5)0.0020 (5)
C180.0161 (7)0.0163 (7)0.0241 (7)0.0040 (5)0.0000 (5)0.0022 (6)
C190.0184 (7)0.0184 (7)0.0232 (7)0.0028 (5)0.0019 (5)0.0001 (6)
C200.0255 (8)0.0193 (8)0.0312 (8)0.0002 (6)0.0022 (6)0.0001 (6)
C210.0273 (8)0.0324 (9)0.0244 (7)0.0058 (6)0.0008 (6)0.0008 (6)
C220.0357 (9)0.0330 (9)0.0278 (8)0.0030 (7)0.0087 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—C71.2523 (17)C9—H9C0.9600
O2—C181.2548 (17)C10—H10A0.9600
N1—C11.3870 (18)C10—H10B0.9600
N1—C81.4681 (17)C10—H10C0.9600
N1—H10.891 (9)C11—H11A0.9600
N2—C71.3430 (18)C11—H11B0.9600
N2—C81.4706 (17)C11—H11C0.9600
N2—H20.901 (9)C12—C131.403 (2)
N3—C121.3829 (18)C12—C171.406 (2)
N3—C191.4662 (18)C13—C141.383 (2)
N3—H30.896 (9)C13—H130.9300
N4—C181.3390 (18)C14—C151.404 (2)
N4—C191.4734 (17)C14—C221.506 (2)
N4—H40.897 (9)C15—C161.378 (2)
C1—C21.399 (2)C15—H150.9300
C1—C61.4056 (19)C16—C171.397 (2)
C2—C31.386 (2)C16—H160.9300
C2—H2A0.9300C17—C181.4695 (19)
C3—C41.404 (2)C19—C211.515 (2)
C3—C111.510 (2)C19—C201.530 (2)
C4—C51.376 (2)C20—H20A0.9600
C4—H4A0.9300C20—H20B0.9600
C5—C61.394 (2)C20—H20C0.9600
C5—H50.9300C21—H21A0.9600
C6—C71.4694 (19)C21—H21B0.9600
C8—C91.5220 (19)C21—H21C0.9600
C8—C101.5288 (19)C22—H22A0.9600
C9—H9A0.9600C22—H22B0.9600
C9—H9B0.9600C22—H22C0.9600
C1—N1—C8117.23 (11)C3—C11—H11A109.5
C1—N1—H1115.6 (10)C3—C11—H11B109.5
C8—N1—H1113.0 (10)H11A—C11—H11B109.5
C7—N2—C8124.33 (11)C3—C11—H11C109.5
C7—N2—H2118.4 (11)H11A—C11—H11C109.5
C8—N2—H2114.6 (12)H11B—C11—H11C109.5
C12—N3—C19116.74 (11)N3—C12—C13122.00 (13)
C12—N3—H3114.5 (11)N3—C12—C17119.16 (12)
C19—N3—H3114.9 (11)C13—C12—C17118.79 (13)
C18—N4—C19123.15 (11)C14—C13—C12121.23 (13)
C18—N4—H4120.3 (12)C14—C13—H13119.4
C19—N4—H4115.8 (12)C12—C13—H13119.4
N1—C1—C2122.63 (12)C13—C14—C15119.41 (13)
N1—C1—C6118.53 (12)C13—C14—C22120.61 (14)
C2—C1—C6118.74 (13)C15—C14—C22119.96 (13)
C3—C2—C1121.23 (13)C16—C15—C14119.97 (13)
C3—C2—H2A119.4C16—C15—H15120.0
C1—C2—H2A119.4C14—C15—H15120.0
C2—C3—C4119.25 (13)C15—C16—C17120.97 (13)
C2—C3—C11120.41 (14)C15—C16—H16119.5
C4—C3—C11120.34 (14)C17—C16—H16119.5
C5—C4—C3120.19 (13)C16—C17—C12119.58 (13)
C5—C4—H4A119.9C16—C17—C18121.82 (12)
C3—C4—H4A119.9C12—C17—C18118.39 (12)
C4—C5—C6120.74 (14)O2—C18—N4121.59 (12)
C4—C5—H5119.6O2—C18—C17122.29 (12)
C6—C5—H5119.6N4—C18—C17116.01 (12)
C5—C6—C1119.85 (13)N3—C19—N4105.84 (11)
C5—C6—C7121.31 (12)N3—C19—C21109.58 (11)
C1—C6—C7118.79 (12)N4—C19—C21108.49 (11)
O1—C7—N2121.39 (12)N3—C19—C20112.31 (11)
O1—C7—C6122.25 (12)N4—C19—C20109.72 (11)
N2—C7—C6116.33 (12)C21—C19—C20110.72 (12)
N1—C8—N2106.56 (11)C19—C20—H20A109.5
N1—C8—C9108.83 (11)C19—C20—H20B109.5
N2—C8—C9108.07 (11)H20A—C20—H20B109.5
N1—C8—C10111.79 (11)C19—C20—H20C109.5
N2—C8—C10110.37 (11)H20A—C20—H20C109.5
C9—C8—C10111.04 (12)H20B—C20—H20C109.5
C8—C9—H9A109.5C19—C21—H21A109.5
C8—C9—H9B109.5C19—C21—H21B109.5
H9A—C9—H9B109.5H21A—C21—H21B109.5
C8—C9—H9C109.5C19—C21—H21C109.5
H9A—C9—H9C109.5H21A—C21—H21C109.5
H9B—C9—H9C109.5H21B—C21—H21C109.5
C8—C10—H10A109.5C14—C22—H22A109.5
C8—C10—H10B109.5C14—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C8—C10—H10C109.5C14—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
C8—N1—C1—C2149.48 (13)C19—N3—C12—C13152.94 (13)
C8—N1—C1—C634.23 (18)C19—N3—C12—C1729.74 (18)
N1—C1—C2—C3176.45 (13)N3—C12—C13—C14179.69 (13)
C6—C1—C2—C30.2 (2)C17—C12—C13—C142.4 (2)
C1—C2—C3—C40.2 (2)C12—C13—C14—C150.6 (2)
C1—C2—C3—C11179.50 (14)C12—C13—C14—C22177.81 (13)
C2—C3—C4—C50.7 (2)C13—C14—C15—C161.1 (2)
C11—C3—C4—C5179.92 (15)C22—C14—C15—C16179.51 (13)
C3—C4—C5—C60.7 (2)C14—C15—C16—C171.0 (2)
C4—C5—C6—C10.2 (2)C15—C16—C17—C120.8 (2)
C4—C5—C6—C7177.87 (13)C15—C16—C17—C18173.90 (13)
N1—C1—C6—C5176.62 (12)N3—C12—C17—C16179.82 (12)
C2—C1—C6—C50.2 (2)C13—C12—C17—C162.4 (2)
N1—C1—C6—C71.08 (19)N3—C12—C17—C184.97 (19)
C2—C1—C6—C7177.51 (12)C13—C12—C17—C18172.44 (12)
C8—N2—C7—O1174.19 (12)C19—N4—C18—O2170.86 (12)
C8—N2—C7—C67.79 (19)C19—N4—C18—C1712.96 (18)
C5—C6—C7—O112.0 (2)C16—C17—C18—O212.3 (2)
C1—C6—C7—O1165.67 (12)C12—C17—C18—O2162.46 (12)
C5—C6—C7—N2170.01 (13)C16—C17—C18—N4171.59 (12)
C1—C6—C7—N212.33 (18)C12—C17—C18—N413.69 (18)
C1—N1—C8—N249.04 (15)C12—N3—C19—N450.53 (15)
C1—N1—C8—C9165.35 (12)C12—N3—C19—C21167.33 (12)
C1—N1—C8—C1071.63 (15)C12—N3—C19—C2069.18 (16)
C7—N2—C8—N136.65 (16)C18—N4—C19—N343.38 (16)
C7—N2—C8—C9153.48 (13)C18—N4—C19—C21160.91 (12)
C7—N2—C8—C1084.92 (15)C18—N4—C19—C2078.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (1)2.22 (1)3.0917 (16)166 (1)
N2—H2···O20.90 (1)2.03 (1)2.9144 (15)167 (2)
N4—H4···O10.90 (1)1.96 (1)2.8488 (16)173 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O
Mr190.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)19.538 (4), 10.104 (2), 20.735 (4)
V3)4093.4 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
31345, 3599, 3269
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.07
No. of reflections3599
No. of parameters274
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.891 (9)2.221 (10)3.0917 (16)165.7 (14)
N2—H2···O20.901 (9)2.029 (10)2.9144 (15)167.2 (16)
N4—H4···O10.897 (9)1.956 (10)2.8488 (16)173.3 (18)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Beijing Institute of Technology for financial support.

References

First citationJackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107–117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. Q., Rong, L. C., Wang, J. X., Wang, X. S., Tu, S. J. & Hu, H. W. (2004). Chem. J. Chin. Univ. 25, 2051–2053.  CAS Google Scholar
First citationZhang, L., Li, J., Shi, D., Zhang, L. & Fan, Y. (2008). Acta Cryst. E64, o448.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds