metal-organic compounds
cis-Bis(nitrato-κ2O,O′)bis(triethylphosphine oxide-κO)nickel(II)
aAnalytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
*Correspondence e-mail: Ruediger.Seidel@rub.de
In the title compound, [Ni(NO3)2(C6H15OP)2], the NiII ion, lying on a crystallographic twofold axis, adopts a distorted octahedral coordination, consisting of O-donor atoms of two symmetry-related triethylphospine oxide and two bidentate nitrate ligands.
Related literature
For the synthesis and the II complex, see: Alnaji et al. (1991). For the preparation of the precursor trans-[NiCl2(Et3P)2] (Et3P = triethylphosphine), see: Jensen (1936). For the synthesis of cis-[Pt(NO3)2(Et3P)2], see: Kuehl et al. (2001).
of the isotypic CoExperimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Bruker, 1999); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809015724/kj2126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015724/kj2126Isup2.hkl
The title compound was obtained as an oxidation product of the metathesis reaction of trans-[NiCl2(Et3P)2] with AgNO3. The synthetic procedure was adapted from the preparation of cis-[Pt(NO3)2(Et3P)2] (Kuehl et al., 2001). trans-[NiCl2(Et3P)2] was prepared according to the literature (Jensen, 1936). 33 mg (0.197) AgNO3 was added to a stirred solution of 36 mg (0.098 mmol) trans-[NiCl2(Et3P)2] in 40 ml acetone. The mixture was stirred 12 h in the dark. The colour changed from red to yellow. The solvent was removed in vacuum and the residue was suspended in 40 ml dichloromethane. Filtration and subsequent evaporation of the solvent yielded a yellow powder. A single-crystal suitable for X-ray diffraction was obtained from methanol-d4 when the solvent was allowed to evaporate slowly at ambient temperature.
Hydrogen atoms were placed at geometrically calculated positions and refined with Uiso 1.2 times (1.5 for methyl groups) of their parent atoms and allowing to ride on them. The initial torsion angles of the methyl groups were determined via a difference Fourier analysis and refined, while retaining the tetrahedral geometry.
Data collection: XSCANS (Bruker, 1999); cell
XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are drawn with arbitrary size. Symmetry codes: (i) -x,y,-z + 1/2. |
[Ni(NO3)2(C6H15OP)2] | F(000) = 952 |
Mr = 451.03 | Dx = 1.409 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 50 reflections |
a = 16.954 (2) Å | θ = 4.7–16.8° |
b = 7.8494 (5) Å | µ = 1.10 mm−1 |
c = 15.9905 (9) Å | T = 294 K |
β = 92.419 (5)° | Prism, yellow |
V = 2126.1 (3) Å3 | 0.31 × 0.26 × 0.24 mm |
Z = 4 |
Siemens P4 four-circle diffractometer | 1641 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.047 |
Graphite monochromator | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −1→20 |
Absorption correction: ψ scan (ABSPsiScan in PLATON; Spek, 2009) | k = −1→9 |
Tmin = 0.719, Tmax = 0.770 | l = −18→18 |
2351 measured reflections | 3 standard reflections every 97 reflections |
1829 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0309P)2 + 1.435P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1829 reflections | Δρmax = 0.22 e Å−3 |
118 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0039 (5) |
[Ni(NO3)2(C6H15OP)2] | V = 2126.1 (3) Å3 |
Mr = 451.03 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.954 (2) Å | µ = 1.10 mm−1 |
b = 7.8494 (5) Å | T = 294 K |
c = 15.9905 (9) Å | 0.31 × 0.26 × 0.24 mm |
β = 92.419 (5)° |
Siemens P4 four-circle diffractometer | 1641 reflections with I > 2σ(I) |
Absorption correction: ψ scan (ABSPsiScan in PLATON; Spek, 2009) | Rint = 0.047 |
Tmin = 0.719, Tmax = 0.770 | 3 standard reflections every 97 reflections |
2351 measured reflections | intensity decay: none |
1829 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
1829 reflections | Δρmin = −0.28 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.58558 (5) | 0.2500 | 0.04465 (16) | |
P1 | 0.10851 (4) | 0.30215 (8) | 0.15778 (3) | 0.04913 (18) | |
O1 | 0.08156 (10) | 0.4144 (2) | 0.22694 (10) | 0.0585 (4) | |
O2 | −0.04216 (10) | 0.6501 (2) | 0.13055 (10) | 0.0596 (4) | |
O3 | −0.08635 (10) | 0.7839 (2) | 0.23545 (11) | 0.0644 (5) | |
O4 | −0.12961 (13) | 0.8501 (3) | 0.10934 (14) | 0.0895 (6) | |
N1 | −0.08784 (12) | 0.7647 (3) | 0.15682 (13) | 0.0587 (5) | |
C11 | 0.13399 (18) | 0.4234 (3) | 0.06864 (16) | 0.0681 (7) | |
H11A | 0.1582 | 0.3481 | 0.0290 | 0.082* | |
H11B | 0.0860 | 0.4682 | 0.0418 | 0.082* | |
C12 | 0.18933 (19) | 0.5692 (4) | 0.0880 (2) | 0.0799 (8) | |
H12A | 0.1668 | 0.6427 | 0.1286 | 0.120* | |
H12B | 0.1977 | 0.6323 | 0.0377 | 0.120* | |
H12C | 0.2389 | 0.5256 | 0.1100 | 0.120* | |
C13 | 0.19220 (15) | 0.1817 (3) | 0.19631 (17) | 0.0642 (7) | |
H13A | 0.2336 | 0.2609 | 0.2137 | 0.077* | |
H13B | 0.1772 | 0.1198 | 0.2457 | 0.077* | |
C14 | 0.22625 (19) | 0.0551 (4) | 0.1355 (2) | 0.0910 (10) | |
H14A | 0.1884 | −0.0334 | 0.1233 | 0.137* | |
H14B | 0.2736 | 0.0059 | 0.1602 | 0.137* | |
H14C | 0.2383 | 0.1127 | 0.0847 | 0.137* | |
C15 | 0.03471 (17) | 0.1488 (4) | 0.12138 (18) | 0.0722 (7) | |
H15A | 0.0588 | 0.0715 | 0.0826 | 0.087* | |
H15B | 0.0189 | 0.0820 | 0.1689 | 0.087* | |
C16 | −0.03782 (17) | 0.2241 (4) | 0.0791 (2) | 0.0831 (9) | |
H16A | −0.0620 | 0.3019 | 0.1166 | 0.125* | |
H16B | −0.0744 | 0.1347 | 0.0641 | 0.125* | |
H16C | −0.0235 | 0.2838 | 0.0296 | 0.125* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0491 (2) | 0.0437 (2) | 0.0416 (2) | 0.000 | 0.00704 (16) | 0.000 |
P1 | 0.0584 (4) | 0.0457 (3) | 0.0434 (3) | 0.0050 (3) | 0.0032 (2) | 0.0001 (2) |
O1 | 0.0626 (9) | 0.0619 (10) | 0.0511 (9) | 0.0137 (8) | 0.0046 (7) | −0.0072 (8) |
O2 | 0.0711 (11) | 0.0575 (10) | 0.0502 (9) | 0.0081 (9) | 0.0033 (8) | 0.0022 (8) |
O3 | 0.0675 (11) | 0.0579 (10) | 0.0683 (11) | 0.0082 (8) | 0.0083 (9) | −0.0071 (9) |
O4 | 0.0899 (14) | 0.0704 (12) | 0.1056 (16) | 0.0125 (11) | −0.0261 (12) | 0.0235 (12) |
N1 | 0.0599 (12) | 0.0473 (11) | 0.0682 (14) | −0.0036 (10) | −0.0041 (10) | 0.0072 (10) |
C11 | 0.096 (2) | 0.0589 (15) | 0.0500 (13) | −0.0035 (14) | 0.0058 (13) | 0.0047 (12) |
C12 | 0.087 (2) | 0.0734 (19) | 0.0802 (19) | −0.0169 (16) | 0.0137 (16) | 0.0077 (15) |
C13 | 0.0660 (16) | 0.0587 (15) | 0.0683 (16) | 0.0138 (13) | 0.0091 (12) | 0.0080 (12) |
C14 | 0.082 (2) | 0.0632 (18) | 0.129 (3) | 0.0169 (15) | 0.025 (2) | −0.0113 (18) |
C15 | 0.0865 (19) | 0.0573 (15) | 0.0721 (17) | −0.0088 (14) | −0.0049 (14) | 0.0011 (14) |
C16 | 0.086 (2) | 0.0774 (19) | 0.084 (2) | −0.0173 (17) | −0.0143 (16) | −0.0025 (16) |
Ni1—O1 | 1.9741 (16) | C12—H12A | 0.9600 |
Ni1—O1i | 1.9741 (16) | C12—H12B | 0.9600 |
Ni1—O2i | 2.0738 (16) | C12—H12C | 0.9600 |
Ni1—O2 | 2.0738 (16) | C13—C14 | 1.521 (4) |
Ni1—O3i | 2.1429 (17) | C13—H13A | 0.9700 |
Ni1—O3 | 2.1429 (17) | C13—H13B | 0.9700 |
P1—O1 | 1.5001 (16) | C14—H14A | 0.9600 |
P1—C11 | 1.782 (2) | C14—H14B | 0.9600 |
P1—C13 | 1.793 (2) | C14—H14C | 0.9600 |
P1—C15 | 1.814 (3) | C15—C16 | 1.499 (4) |
O2—N1 | 1.270 (3) | C15—H15A | 0.9700 |
O3—N1 | 1.266 (3) | C15—H15B | 0.9700 |
O4—N1 | 1.217 (3) | C16—H16A | 0.9600 |
C11—C12 | 1.503 (4) | C16—H16B | 0.9600 |
C11—H11A | 0.9700 | C16—H16C | 0.9600 |
C11—H11B | 0.9700 | ||
O1—Ni1—O1i | 94.2 (1) | H11A—C11—H11B | 107.6 |
O1—Ni1—O2i | 96.97 (7) | C11—C12—H12A | 109.5 |
O1i—Ni1—O2i | 102.19 (6) | C11—C12—H12B | 109.5 |
O1—Ni1—O2 | 102.19 (6) | H12A—C12—H12B | 109.5 |
O1i—Ni1—O2 | 96.97 (7) | C11—C12—H12C | 109.5 |
O2i—Ni1—O2 | 151.7 (1) | H12A—C12—H12C | 109.5 |
O1—Ni1—O3i | 91.95 (7) | H12B—C12—H12C | 109.5 |
O1i—Ni1—O3i | 162.74 (7) | C14—C13—P1 | 116.2 (2) |
O2i—Ni1—O3i | 61.00 (7) | C14—C13—H13A | 108.2 |
O2—Ni1—O3i | 97.47 (7) | P1—C13—H13A | 108.2 |
O1—Ni1—O3 | 162.74 (7) | C14—C13—H13B | 108.2 |
O1i—Ni1—O3 | 91.95 (7) | P1—C13—H13B | 108.2 |
O2i—Ni1—O3 | 97.47 (7) | H13A—C13—H13B | 107.4 |
O2—Ni1—O3 | 61.00 (7) | C13—C14—H14A | 109.5 |
O3i—Ni1—O3 | 86.8 (1) | C13—C14—H14B | 109.5 |
O1—P1—C11 | 111.57 (12) | H14A—C14—H14B | 109.5 |
O1—P1—C13 | 108.53 (11) | C13—C14—H14C | 109.5 |
C11—P1—C13 | 109.97 (13) | H14A—C14—H14C | 109.5 |
O1—P1—C15 | 113.50 (12) | H14B—C14—H14C | 109.5 |
C11—P1—C15 | 106.55 (13) | C16—C15—P1 | 115.1 (2) |
C13—P1—C15 | 106.58 (13) | C16—C15—H15A | 108.5 |
P1—O1—Ni1 | 140.8 (1) | P1—C15—H15A | 108.5 |
N1—O2—Ni1 | 93.42 (13) | C16—C15—H15B | 108.5 |
N1—O3—Ni1 | 90.36 (13) | P1—C15—H15B | 108.5 |
O4—N1—O3 | 122.7 (2) | H15A—C15—H15B | 107.5 |
O4—N1—O2 | 122.1 (2) | C15—C16—H16A | 109.5 |
O3—N1—O2 | 115.21 (19) | C15—C16—H16B | 109.5 |
C12—C11—P1 | 114.3 (2) | H16A—C16—H16B | 109.5 |
C12—C11—H11A | 108.7 | C15—C16—H16C | 109.5 |
P1—C11—H11A | 108.7 | H16A—C16—H16C | 109.5 |
C12—C11—H11B | 108.7 | H16B—C16—H16C | 109.5 |
P1—C11—H11B | 108.7 |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(NO3)2(C6H15OP)2] |
Mr | 451.03 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 16.954 (2), 7.8494 (5), 15.9905 (9) |
β (°) | 92.419 (5) |
V (Å3) | 2126.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.10 |
Crystal size (mm) | 0.31 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Siemens P4 four-circle diffractometer |
Absorption correction | ψ scan (ABSPsiScan in PLATON; Spek, 2009) |
Tmin, Tmax | 0.719, 0.770 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2351, 1829, 1641 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.073, 1.05 |
No. of reflections | 1829 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.28 |
Computer programs: XSCANS (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), enCIFer (Allen et al., 2004).
Ni1—O1 | 1.9741 (16) | O2—N1 | 1.270 (3) |
Ni1—O2 | 2.0738 (16) | O3—N1 | 1.266 (3) |
Ni1—O3 | 2.1429 (17) | O4—N1 | 1.217 (3) |
P1—O1 | 1.5001 (16) | ||
O1—Ni1—O1i | 94.2 (1) | O2—Ni1—O3i | 97.47 (7) |
O1—Ni1—O2i | 96.97 (7) | O1—Ni1—O3 | 162.74 (7) |
O1—Ni1—O2 | 102.19 (6) | O2—Ni1—O3 | 61.00 (7) |
O2i—Ni1—O2 | 151.7 (1) | O3i—Ni1—O3 | 86.8 (1) |
O1—Ni1—O3i | 91.95 (7) | P1—O1—Ni1 | 140.8 (1) |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
The author thanks Dr Iris M. Oppel and Professor William S. Sheldrick for generous support.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Alnaji, O., Dartiguenave, M. & Dartiguenave, Y. (1991). Inorg. Chim. Acta, 187, 31–38. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jensen, K. A. (1936). Z. Anorg. Allg. Chem. 229, 265–281. CrossRef CAS Google Scholar
Kuehl, C. J., Tabellion, F. M., Arif, A. M. & Stang, P. J. (2001). Organometallics, 20, 1956–1959. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title complex, cis-[Ni(NO3)2(OPEt3)] (OPEt3 = triethylphosphine oxide), exhibits C2 point symmetry and is located on a twofold crystallographic axis. An ORTEP diagram is depicted in Fig. 1.
As previously observed in the isotypic CoII complex (Alnaji et al., 1991), the triethylphosphine oxide and the nitrate ligands are arranged in a cis geometry about the NiII ion. The bond lengths are comparable to those reported for the CoII complex. The bidentate nitrate ligand binds asymmetrically with Ni—O distances of 2.0738 (16) and 2.1429 (17) Å. This leads to differences in the N—O bond lengths. The N—O distances of the coordinated oxygen atoms are considerably longer than that of the free one (Table 1). The magnitude of the asymmetric bidentate binding is slightly smaller than that reported for the CoII complex.
The O2—Ni1—O3 angle is small, as is expected for a bidentate chelating nitrate ion. The remaining angles about the NiII ion show large deviations from the regular octahedral geometry (see table 1). The P—O—Ni angle exhibits a typical value of 140.8 (1)°.