metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m615-m616

Redetermination of (2,2′-bi­pyridine-κ2N,N′)di­chlorido­palladium(II) di­chloro­methane solvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bInstitute of Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 23 April 2009; accepted 30 April 2009; online 7 May 2009)

In the title compound, [PdCl2(C10H8N2)]·CH2Cl2, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2′-bipyridine (bipy) ligand and two chloride ions. The compound displays intra­molecular C—H⋯Cl hydrogen bonds and pairs of complex mol­ecules are connected by inter­molecular C—H⋯Cl hydrogen bonds. Inter­molecular ππ inter­actions are present between the pyridine rings of the ligand, the shortest centroid–centroid distance being 4.096 (3) Å. As a result of the electronic nature of the chelate ring, it is possible to create ππ inter­actions to its symmetry-related counterpart [3.720 (2) Å] and also with a pyridine ring [3.570 (3) Å] of the bipy unit. The present structure is a redetermination of a previous structure [Vicente et al. (1997[Vicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.]). Private communication (refcode PYCXMN02). CCDC, Cambridge, England]. In the new structure refinement all H atoms were located in a difference Fourier synthesis. Their coordinates were refined freely, together with isotropic displacement parameters.

Related literature

For crystal structures of [PdX2(bipy)] (X = Cl or Br), see: Maekawa et al. (1991[Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521-522.]); Vicente et al. (1997[Vicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.]); Smeets et al. (1997[Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045-1047.]). For related Pt(II, IV)–bipyridine complexes, see: Osborn & Rogers (1974[Osborn, R. S. & Rogers, D. (1974). J. Chem. Soc. Daton Trans. pp. 1002-1004.]); Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Sartori et al. (2005[Sartori, D. A., Hurst, S. K., Wood, N., Larsen, R. D. & Abbott, E. H. (2005). J. Chem. Crystallogr. 35, 995-998.]); Momeni et al. (2007[Momeni, B. Z., Hamzeh, S., Hosseini, S. S. & Rominger, F. (2007). Inorg. Chim. Acta, 360, 2661-2668.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C10H8N2)]·CH2Cl2

  • Mr = 418.41

  • Triclinic, [P \overline 1]

  • a = 8.7913 (10) Å

  • b = 9.1115 (11) Å

  • c = 10.1846 (12) Å

  • α = 72.481 (2)°

  • β = 66.983 (2)°

  • γ = 81.429 (2)°

  • V = 715.58 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 293 K

  • 0.20 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.850

  • 4221 measured reflections

  • 2862 independent reflections

  • 2298 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.05

  • 2862 reflections

  • 203 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N2 2.025 (4)
Pd1—N1 2.029 (4)
Pd1—Cl2 2.2853 (14)
Pd1—Cl1 2.2964 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 (5) 2.59 (5) 3.230 (6) 126 (4)
C2—H2⋯Cl2i 0.93 (5) 2.79 (5) 3.595 (7) 145 (4)
C10—H10⋯Cl1 0.86 (5) 2.68 (5) 3.248 (6) 125 (4)
C11—H11B⋯Cl1 0.99 (6) 2.63 (6) 3.578 (8) 161 (5)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PdCl2(C10H8N2)].CH2Cl2, contains a neutral PdII complex and a solvent molecule (Fig. 1). The compound crystallized in the triclinic space group P1, whereas the previously reported complex [PdCl2(C10H8N2)] crystallized in the orthorhombic space group C2221 (Maekawa et al., 1991). The X-ray structure analysis of the title compound was previously carried out (Vicente et al., 1997) and the structure is stored in CCDC code: RAGVUQ. The stored and our crystal structures are in agreement, however, the new structure determination provides data on hydrogen bonding based on H atoms positions located from a difference Fourier synthesis and refined isotropically.

In the complex, the Pd2+ ion is four-coordinated in a distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two Cl ions. The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle (81.04 (16)°), which results in non-linear trans arrangement (<N1—Pd1—Cl1 = 175.78 (12)° and <N2—Pd1—Cl2 = 174.97 (12)°). The Pd1—N and Pd1—Cl bond lengths are almost equal (Pd1—N: 2.029 (4) and 2.025 (4) Å; Pd1—Cl 2.2964 (14) and 2.2853 (14) Å), respectively (Table 1), and close to those reported for [PdCl2(C10H8N2)] (Maekawa et al., 1991). The best least-squares plane of the atoms of the planar complex, except Cl2, reveals mean deviation of 0.026 (5) Å; deviation of Cl2 from this plane is 0.184 (2) Å. The compound displays the inter- and intramolecular C—H···Cl hydrogen bonds (Table 2) and molecules are connected by intermolecular hydrogen bonds and stacked in layres along the c axis (Fig. 2). Intermolecular π-π interactions (defined by separation distance between the ring centroids (the symmetry operation for second plane 1-x,1-y,-z) involve the planes: Pd1,N1 N2 and ity symmetry related counterpart, 3.720 (2) Å, planes are parallel and shifted for 1.506 Å; Pd1,N1 N2 and N1 C5, 3.570 (3) Å, the dihedral angle between planes is 1.54 °, no shift; N1 C5 and N2 C10, 4.096 (3) Å the dihedral angle between planes is 2.72 °, no shift.

Related literature top

For crystal structures of [PdX2(bipy)] (X = Cl or Br), see: Maekawa et al. (1991); Vicente et al. (1997); Smeets et al. (1997). For related Pt(II, IV)–bipyridine complexes, see: Osborn & Rogers (1974); Hambley (1986); Sartori et al. (2005); Momeni et al. (2007); Kim et al. (2009).

Experimental top

To a solution of Na2PdCl4 (0.300 g, 1.020 mmol) in EtOH (30 ml) was added 2,2'-bipyridine (0.159 g, 1.018 mmol) and stirred for 5 h at room temperature. The precipitate obtained was separated by filtration and washed with EtOH and water and dried under vacuum, to give a yellow powder (0.302 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution.

Refinement top

All H atoms were located from Fourier difference maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of I. Hydrogen-bond interactions are drawn with dashed lines.
(2,2'-Bipyridine-κ2N,N')dichloridopalladium(II) dichloromethane solvate top
Crystal data top
[PdCl2(C10H8N2)]·CH2Cl2Z = 2
Mr = 418.41F(000) = 408
Triclinic, P1Dx = 1.942 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7913 (10) ÅCell parameters from 983 reflections
b = 9.1115 (11) Åθ = 2.3–21.7°
c = 10.1846 (12) ŵ = 2.03 mm1
α = 72.481 (2)°T = 293 K
β = 66.983 (2)°Stick, yellow
γ = 81.429 (2)°0.20 × 0.08 × 0.08 mm
V = 715.58 (15) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2862 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.623, Tmax = 0.850k = 711
4221 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.5604P]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[PdCl2(C10H8N2)]·CH2Cl2γ = 81.429 (2)°
Mr = 418.41V = 715.58 (15) Å3
Triclinic, P1Z = 2
a = 8.7913 (10) ÅMo Kα radiation
b = 9.1115 (11) ŵ = 2.03 mm1
c = 10.1846 (12) ÅT = 293 K
α = 72.481 (2)°0.20 × 0.08 × 0.08 mm
β = 66.983 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2862 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2298 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.850Rint = 0.023
4221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.05Δρmax = 0.56 e Å3
2862 reflectionsΔρmin = 0.69 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.32112 (5)0.28572 (4)0.21130 (4)0.04479 (15)
Cl10.36850 (18)0.02764 (15)0.30403 (16)0.0612 (4)
Cl20.1458 (2)0.22805 (17)0.11857 (19)0.0720 (5)
N10.2916 (5)0.5169 (5)0.1348 (4)0.0454 (10)
N20.4786 (5)0.3551 (5)0.2803 (4)0.0446 (10)
C10.1884 (7)0.5895 (7)0.0665 (6)0.0545 (14)
H10.126 (6)0.526 (6)0.052 (5)0.058 (16)*
C20.1803 (8)0.7475 (7)0.0175 (7)0.0610 (15)
H20.101 (7)0.800 (6)0.020 (6)0.063 (17)*
C30.2768 (8)0.8325 (7)0.0413 (7)0.0620 (16)
H30.273 (6)0.930 (6)0.018 (5)0.043 (14)*
C40.3831 (7)0.7585 (6)0.1120 (6)0.0515 (13)
H40.451 (6)0.809 (6)0.128 (5)0.046 (14)*
C50.3887 (6)0.6010 (6)0.1590 (5)0.0417 (11)
C60.4959 (6)0.5099 (6)0.2384 (5)0.0466 (12)
C70.6069 (8)0.5739 (7)0.2675 (7)0.0644 (16)
H70.623 (7)0.683 (7)0.236 (6)0.081 (19)*
C80.7003 (9)0.4784 (8)0.3427 (8)0.077 (2)
H80.775 (8)0.512 (8)0.355 (7)0.09 (2)*
C90.6833 (8)0.3223 (8)0.3858 (8)0.0717 (18)
H90.734 (6)0.255 (6)0.442 (5)0.049 (15)*
C100.5692 (7)0.2645 (7)0.3546 (7)0.0579 (15)
H100.562 (6)0.166 (6)0.376 (5)0.043 (14)*
C110.0507 (9)0.1175 (7)0.6220 (8)0.0614 (16)
H11A0.043 (7)0.071 (6)0.685 (6)0.062 (17)*
H11B0.115 (7)0.087 (7)0.529 (7)0.09 (2)*
Cl30.0049 (2)0.31218 (19)0.55636 (18)0.0740 (5)
Cl40.1895 (2)0.1016 (2)0.7099 (2)0.0887 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0465 (2)0.0387 (2)0.0512 (3)0.00670 (17)0.01825 (18)0.01196 (18)
Cl10.0744 (9)0.0386 (7)0.0735 (9)0.0059 (7)0.0309 (8)0.0121 (7)
Cl20.0836 (11)0.0561 (9)0.0965 (12)0.0203 (8)0.0543 (9)0.0117 (8)
N10.045 (2)0.044 (2)0.048 (2)0.005 (2)0.017 (2)0.0118 (19)
N20.049 (2)0.039 (2)0.050 (2)0.0036 (19)0.021 (2)0.0121 (19)
C10.052 (3)0.054 (3)0.062 (3)0.002 (3)0.028 (3)0.012 (3)
C20.063 (4)0.050 (4)0.068 (4)0.008 (3)0.029 (3)0.009 (3)
C30.072 (4)0.039 (3)0.074 (4)0.002 (3)0.025 (3)0.016 (3)
C40.057 (3)0.039 (3)0.063 (3)0.005 (3)0.025 (3)0.016 (3)
C50.041 (3)0.039 (3)0.044 (3)0.004 (2)0.010 (2)0.016 (2)
C60.046 (3)0.044 (3)0.045 (3)0.004 (2)0.012 (2)0.011 (2)
C70.080 (4)0.052 (4)0.078 (4)0.015 (3)0.045 (4)0.013 (3)
C80.084 (5)0.070 (5)0.097 (5)0.016 (4)0.058 (4)0.009 (4)
C90.074 (4)0.063 (4)0.092 (5)0.004 (3)0.054 (4)0.009 (4)
C100.065 (4)0.045 (3)0.067 (4)0.002 (3)0.032 (3)0.008 (3)
C110.065 (4)0.052 (4)0.072 (4)0.009 (3)0.026 (3)0.019 (3)
Cl30.0761 (10)0.0652 (10)0.0759 (10)0.0022 (8)0.0354 (9)0.0044 (8)
Cl40.0906 (12)0.0701 (11)0.1211 (15)0.0040 (9)0.0663 (12)0.0139 (10)
Geometric parameters (Å, º) top
Pd1—N22.025 (4)C4—H40.90 (5)
Pd1—N12.029 (4)C5—C61.480 (7)
Pd1—Cl22.2853 (14)C6—C71.371 (7)
Pd1—Cl12.2964 (14)C7—C81.377 (9)
N1—C11.335 (6)C7—H70.96 (6)
N1—C51.360 (6)C8—C91.369 (9)
N2—C101.338 (7)C8—H80.83 (6)
N2—C61.359 (6)C9—C101.375 (8)
C1—C21.375 (8)C9—H90.90 (5)
C1—H10.93 (5)C10—H100.86 (5)
C2—C31.360 (8)C11—Cl41.743 (6)
C2—H20.93 (5)C11—Cl31.765 (6)
C3—C41.376 (8)C11—H11A0.90 (5)
C3—H30.85 (5)C11—H11B0.99 (6)
C4—C51.369 (7)
N2—Pd1—N181.04 (16)N1—C5—C4120.6 (5)
N2—Pd1—Cl2174.97 (12)N1—C5—C6115.2 (4)
N1—Pd1—Cl294.27 (12)C4—C5—C6124.2 (5)
N2—Pd1—Cl194.74 (12)N2—C6—C7121.4 (5)
N1—Pd1—Cl1175.78 (12)N2—C6—C5115.0 (4)
Cl2—Pd1—Cl189.94 (5)C7—C6—C5123.6 (5)
C1—N1—C5119.3 (5)C6—C7—C8118.8 (6)
C1—N1—Pd1126.5 (4)C6—C7—H7122 (4)
C5—N1—Pd1114.2 (3)C8—C7—H7119 (4)
C10—N2—C6118.9 (4)C9—C8—C7120.2 (6)
C10—N2—Pd1126.6 (4)C9—C8—H8118 (5)
C6—N2—Pd1114.4 (3)C7—C8—H8121 (5)
N1—C1—C2121.4 (6)C8—C9—C10118.5 (6)
N1—C1—H1116 (3)C8—C9—H9124 (3)
C2—C1—H1123 (3)C10—C9—H9117 (3)
C3—C2—C1119.7 (6)N2—C10—C9122.2 (6)
C3—C2—H2118 (4)N2—C10—H10118 (3)
C1—C2—H2122 (4)C9—C10—H10119 (3)
C2—C3—C4119.2 (6)Cl4—C11—Cl3111.0 (3)
C2—C3—H3124 (3)Cl4—C11—H11A111 (4)
C4—C3—H3117 (3)Cl3—C11—H11A106 (4)
C5—C4—C3119.8 (5)Cl4—C11—H11B106 (3)
C5—C4—H4118 (3)Cl3—C11—H11B103 (4)
C3—C4—H4123 (3)H11A—C11—H11B120 (5)
N2—Pd1—N1—C1177.3 (4)C3—C4—C5—N10.8 (8)
Cl2—Pd1—N1—C14.6 (4)C3—C4—C5—C6178.8 (5)
N2—Pd1—N1—C52.4 (3)C10—N2—C6—C71.7 (8)
Cl2—Pd1—N1—C5175.7 (3)Pd1—N2—C6—C7175.3 (4)
N1—Pd1—N2—C10179.8 (5)C10—N2—C6—C5179.1 (4)
Cl1—Pd1—N2—C100.3 (5)Pd1—N2—C6—C54.0 (5)
N1—Pd1—N2—C63.5 (3)N1—C5—C6—N22.0 (6)
Cl1—Pd1—N2—C6176.4 (3)C4—C5—C6—N2177.6 (5)
C5—N1—C1—C21.2 (8)N1—C5—C6—C7177.3 (5)
Pd1—N1—C1—C2179.2 (4)C4—C5—C6—C73.1 (8)
N1—C1—C2—C31.3 (9)N2—C6—C7—C81.0 (9)
C1—C2—C3—C41.1 (9)C5—C6—C7—C8179.8 (6)
C2—C3—C4—C50.8 (9)C6—C7—C8—C90.7 (11)
C1—N1—C5—C40.9 (7)C7—C8—C9—C101.2 (11)
Pd1—N1—C5—C4179.4 (4)C6—N2—C10—C92.2 (9)
C1—N1—C5—C6178.7 (4)Pd1—N2—C10—C9174.4 (5)
Pd1—N1—C5—C61.0 (5)C8—C9—C10—N21.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.93 (5)2.59 (5)3.230 (6)126 (4)
C2—H2···Cl2i0.93 (5)2.79 (5)3.595 (7)145 (4)
C10—H10···Cl10.86 (5)2.68 (5)3.248 (6)125 (4)
C11—H11B···Cl10.99 (6)2.63 (6)3.578 (8)161 (5)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C10H8N2)]·CH2Cl2
Mr418.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7913 (10), 9.1115 (11), 10.1846 (12)
α, β, γ (°)72.481 (2), 66.983 (2), 81.429 (2)
V3)715.58 (15)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.20 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.623, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
4221, 2862, 2298
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.05
No. of reflections2862
No. of parameters203
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.56, 0.69

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd1—N22.025 (4)Pd1—Cl22.2853 (14)
Pd1—N12.029 (4)Pd1—Cl12.2964 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.93 (5)2.59 (5)3.230 (6)126 (4)
C2—H2···Cl2i0.93 (5)2.79 (5)3.595 (7)145 (4)
C10—H10···Cl10.86 (5)2.68 (5)3.248 (6)125 (4)
C11—H11B···Cl10.99 (6)2.63 (6)3.578 (8)161 (5)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521–522.  CrossRef CAS Web of Science Google Scholar
First citationMomeni, B. Z., Hamzeh, S., Hosseini, S. S. & Rominger, F. (2007). Inorg. Chim. Acta, 360, 2661–2668.  Web of Science CSD CrossRef CAS Google Scholar
First citationOsborn, R. S. & Rogers, D. (1974). J. Chem. Soc. Daton Trans. pp. 1002–1004.  CSD CrossRef Web of Science Google Scholar
First citationSartori, D. A., Hurst, S. K., Wood, N., Larsen, R. D. & Abbott, E. H. (2005). J. Chem. Crystallogr. 35, 995–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045–1047.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m615-m616
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds