organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-Methyl cyclo­laudenol

aDepartment of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 27 March 2009; accepted 28 April 2009; online 7 May 2009)

The title compound (systematic name: 3-meth­oxy-24-methyl-9,19-cyclo­lanost-25-ene), C32H54O, is a triterpenoid which has been isolated from Skimmia laureola. The three six-membered rings adopt chair, slightly distorted half-chair and distorted boat conformations, and the five-membered ring adopts an envelope conformation. All the rings are trans fused.

Related literature

For information on Skimmia laureola, see: Polunin & Stainton (1984[Polunin, O. & Stainton, A. (1984). Flowers of the Himalayas, pp. 432-436. Oxford University Press.]); Bukingham (1982[Bukingham, J. (1982). Dictionary of Organic Compounds, p. 185. New York: Champman and Hall.]); Atta-ur-Rahman et al. (2002[Atta-ur-Rahman, Sultana, N., Khan, M. R. & Choudhary, M. I. (2002). Nat. Prod. Lett. 16, 305-313.]). For the structures of closely related compounds, see: Dhaneshwar et al. (1986[Dhaneshwar, N. N., Puranik, V. G., Tavale, S. S., Guru Row, T. N., Bhat, V. S. & Joshi, V. S. (1986). Acta Cryst. C42, 595-597.]); Fan et al. (2006[Fan, Y., Jia, W., Takaishi, Y. & Duan, H.-Q. (2006). Acta Cryst. E62, o4884-o4886.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H54O

  • Mr = 454.75

  • Orthorhombic, P 21 21 21

  • a = 6.8812 (2) Å

  • b = 8.5040 (3) Å

  • c = 47.7465 (9) Å

  • V = 2794.02 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.30 × 0.28 × 0.06 mm

Data collection
  • Bruker APEX2 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.973

  • 21111 measured reflections

  • 2926 independent reflections

  • 2433 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.162

  • S = 1.08

  • 2926 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Skimmia laureola is abundantly found in Northern areas of Pakistan and in Azad Kashmir (Polunin & Stainton, 1984). It finds use in the folk medicine. The strongly aromatic leaves are used in curries or as a flavoring for other foods (Bukingham, 1982). The methanol extract of the plant was subjected to repeated column chromatography to afford a pure triterpene, identified on the basis of spectroscopic studies as o-methyl cyclolaudenol, (I) (Atta-ur-Rahman et al. 2002). In this paper, we report the crystal structure of (I).

The molecular structure of (I) is presented in Fig. 1. The molecule contains three six-membered rings, A, B and C, a five- membered ring, D and a cyclopropane ring. The ring A adopts a chair conformation. The rings B and C show disotortions due to the trans-fused ring D and cyclopropane, exhibiting slightly distorted half-chair and distorted boat conformations, respectively. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.576 (4), 0.503 (4), 0.620 (3) Å, θ = 6.1 (4), 36.7 (5), 71.7 (3)° and ϕ = 7(4), 90.5 (7), 269.7 (3)°, respectively. Ring D adopts an envelope conformation. All rings are trans fused. A search of compounds containing the basic skeleton of (I) in the Cambridge Structural Database (CSD version 5.30; Allen, 2002) yielded only 12 hits, with two compounds closely related to (I), i.e., cimigenol-3-O-β-D-xylopranoside methanol solvate (Fan et al., 2006) and 24-methylene-9,19-cyclolanostan-3β-yl acetate (Dhaneshwar et al., 1986).

Related literature top

For information on Skimmia laureola, see: Polunin & Stainton (1984); Bukingham (1982); Atta-ur-Rahman et al. (2002). For the structures of closely related compounds, see: Dhaneshwar et al. (1986); Fan et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The methanol extract of Skimmia laureola was subjected to silica-gel column chromatography. The column was eluted with increasing polarities of pet. ether/CHCl3. This afforded 4 fractions (PC1—PC4). The fraction PC3 (18 g) obtained by elution with 1 litre pet. ether/CHCl3 (7:3) was subjected to column chromatography. The column was successively eluted with 2 litre pet. ether and 3 litre pet. ether/CHCl3 (ranging from 9:1 to 7:3) to afford 7 fractions (PC3A—PC3G). The fraction PC3—D (1.4 g) obtained by elution of the column with 500 ml pe t. ether/CHCl3 (7:3) was further subjected to column chromatography using 500 ml pe t. ether/CHCl3 (7.5:2.5) to afford a pure triterpene, o-methyl cyclolaudenol (I) as colourless crystals.

Refinement top

An absolute structure could not be established reliably becuase of insufficient anomalous scattering effects. Therefore, Friedel pairs (2070) were merged. All the H-atoms were visible in the difference Fourier maps, they were included in the refinements at geometrically idealized positions with C—H distances = 0.95 - 1.00 Å, and Uiso = 1.5 and 1.2 times Ueq of the methyl and non-methyl C-atoms to which they were bonded. The final difference map was free of chemically significant features.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 30% probability level.
3-methoxy-24-methyl-9,19-cyclolanost-25-ene top
Crystal data top
C32H54OF(000) = 1016
Mr = 454.75Dx = 1.081 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 8963 reflections
a = 6.8812 (2) Åθ = 2.8–66.0°
b = 8.5040 (3) ŵ = 0.46 mm1
c = 47.7465 (9) ÅT = 173 K
V = 2794.02 (14) Å3Plate, colourless
Z = 40.30 × 0.28 × 0.06 mm
Data collection top
Bruker APEX2 CCD
diffractometer
2926 independent reflections
Radiation source: fine-focus sealed tube2433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 68.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 78
Tmin = 0.874, Tmax = 0.973k = 109
21111 measured reflectionsl = 5755
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.091P)2 + 0.39P]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max = 0.007
306 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C32H54OV = 2794.02 (14) Å3
Mr = 454.75Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.8812 (2) ŵ = 0.46 mm1
b = 8.5040 (3) ÅT = 173 K
c = 47.7465 (9) Å0.30 × 0.28 × 0.06 mm
Data collection top
Bruker APEX2 CCD
diffractometer
2926 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2433 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.973Rint = 0.099
21111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
2926 reflectionsΔρmin = 0.31 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1899 (5)0.0137 (4)0.74062 (6)0.0764 (9)
C10.3668 (6)0.3579 (5)0.69846 (8)0.0572 (10)
H1A0.43150.45720.70400.069*
H1B0.24180.38450.68930.069*
C20.3299 (6)0.2576 (5)0.72419 (7)0.0568 (10)
H2A0.45520.23230.73330.068*
H2B0.24950.31720.73770.068*
C30.2278 (5)0.1084 (5)0.71638 (7)0.0492 (9)
H30.10000.13710.70780.059*
C40.3393 (6)0.0070 (5)0.69525 (8)0.0551 (9)
C50.3954 (4)0.1124 (4)0.67005 (7)0.0378 (7)
H50.26850.14530.66170.045*
C60.5016 (5)0.0263 (4)0.64634 (7)0.0464 (8)
H6A0.62740.01430.65330.056*
H6B0.42260.06440.64000.056*
C70.5368 (5)0.1368 (4)0.62185 (7)0.0413 (7)
H7A0.41160.18300.61580.050*
H7B0.59100.07660.60590.050*
C80.6778 (4)0.2694 (4)0.62975 (6)0.0358 (7)
H80.80290.21610.63460.043*
C90.6145 (4)0.3558 (4)0.65634 (7)0.0386 (7)
C100.4960 (5)0.2668 (4)0.67803 (7)0.0440 (8)
C110.5894 (5)0.5305 (4)0.65498 (8)0.0495 (9)
H11A0.61050.57250.67410.059*
H11B0.45210.55170.65010.059*
C120.7169 (5)0.6262 (4)0.63488 (8)0.0477 (8)
H12A0.63200.69150.62280.057*
H12B0.80000.69810.64600.057*
C130.8457 (4)0.5251 (3)0.61633 (7)0.0356 (7)
C140.7264 (4)0.3812 (4)0.60557 (6)0.0340 (7)
C150.8613 (5)0.3116 (4)0.58314 (7)0.0423 (8)
H15A0.78490.25730.56850.051*
H15B0.95280.23530.59160.051*
C160.9722 (4)0.4519 (3)0.57066 (7)0.0385 (7)
H16A0.93370.46840.55090.046*
H16B1.11400.43240.57130.046*
C170.9196 (4)0.5982 (4)0.58850 (7)0.0376 (7)
H170.80540.64950.57930.045*
C181.0218 (4)0.4705 (4)0.63395 (7)0.0453 (8)
H18A1.10160.56180.63890.068*
H18B1.09990.39620.62300.068*
H18C0.97560.41900.65110.068*
C190.7061 (6)0.2835 (7)0.68323 (9)0.0694 (12)
H19A0.78850.18890.68100.083*
H19B0.74770.35650.69820.083*
C201.0867 (5)0.7216 (4)0.58896 (7)0.0425 (8)
H201.20180.67330.59840.051*
C211.0257 (6)0.8684 (4)0.60564 (9)0.0600 (10)
H21A0.90180.90810.59840.090*
H21B1.12560.94990.60370.090*
H21C1.01100.84080.62550.090*
C221.1457 (5)0.7682 (4)0.55941 (8)0.0480 (8)
H22A1.16220.67120.54820.058*
H22B1.03810.82900.55090.058*
C231.3292 (5)0.8639 (5)0.55714 (9)0.0565 (10)
H23A1.43760.80300.56540.068*
H23B1.31360.96090.56840.068*
C241.3838 (5)0.9098 (4)0.52733 (9)0.0519 (9)
H241.39630.81030.51630.062*
C251.2306 (5)1.0072 (4)0.51349 (7)0.0461 (8)
C261.1536 (7)0.9661 (6)0.48956 (9)0.0729 (12)
H26A1.05811.03090.48100.087*
H26B1.19330.87130.48070.087*
C271.1717 (8)1.1550 (5)0.52792 (10)0.0734 (13)
H27A1.28381.22560.52930.110*
H27B1.12431.13020.54680.110*
H27C1.06811.20650.51720.110*
C281.5849 (6)0.9932 (6)0.52652 (11)0.0741 (13)
H28A1.62251.01210.50700.111*
H28B1.68240.92620.53560.111*
H28C1.57651.09370.53650.111*
C290.0543 (8)0.0814 (7)0.75927 (9)0.0874 (16)
H29A0.11970.16000.77100.131*
H29B0.00110.00080.77120.131*
H29C0.04990.13200.74860.131*
C300.5252 (9)0.0656 (7)0.70874 (11)0.108 (2)
H30A0.60430.01830.71700.162*
H30B0.60080.12040.69430.162*
H30C0.48740.14030.72340.162*
C310.2096 (9)0.1271 (6)0.68548 (10)0.0895 (17)
H31A0.17500.19330.70150.134*
H31B0.27900.19040.67160.134*
H31C0.09110.08390.67710.134*
C320.5379 (4)0.4347 (4)0.59071 (7)0.0451 (8)
H32A0.47650.34410.58160.068*
H32B0.56950.51430.57660.068*
H32C0.44840.47960.60450.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.104 (2)0.079 (2)0.0468 (15)0.008 (2)0.0154 (15)0.0182 (15)
C10.069 (2)0.053 (2)0.050 (2)0.005 (2)0.0142 (18)0.0158 (17)
C20.054 (2)0.076 (3)0.0411 (19)0.004 (2)0.0014 (15)0.0095 (19)
C30.0523 (19)0.058 (2)0.0376 (17)0.0048 (18)0.0023 (14)0.0070 (16)
C40.071 (2)0.049 (2)0.045 (2)0.0100 (19)0.0023 (16)0.0086 (17)
C50.0321 (14)0.0380 (17)0.0434 (17)0.0078 (13)0.0011 (12)0.0029 (14)
C60.0471 (18)0.0357 (17)0.056 (2)0.0041 (15)0.0049 (15)0.0080 (15)
C70.0404 (16)0.0389 (17)0.0446 (18)0.0031 (14)0.0065 (13)0.0127 (14)
C80.0280 (14)0.0333 (15)0.0460 (17)0.0068 (12)0.0022 (12)0.0049 (13)
C90.0362 (15)0.0389 (17)0.0407 (17)0.0089 (13)0.0057 (12)0.0058 (14)
C100.0446 (17)0.0473 (19)0.0400 (17)0.0010 (15)0.0020 (13)0.0075 (15)
C110.0406 (17)0.052 (2)0.056 (2)0.0047 (16)0.0022 (14)0.0175 (17)
C120.0490 (18)0.0367 (17)0.057 (2)0.0100 (15)0.0037 (15)0.0090 (15)
C130.0289 (14)0.0287 (15)0.0492 (18)0.0049 (12)0.0049 (11)0.0052 (13)
C140.0241 (13)0.0333 (16)0.0445 (16)0.0039 (12)0.0024 (11)0.0073 (13)
C150.0362 (16)0.0361 (17)0.055 (2)0.0020 (13)0.0096 (13)0.0099 (15)
C160.0323 (14)0.0326 (16)0.0506 (18)0.0003 (13)0.0013 (12)0.0031 (13)
C170.0299 (14)0.0327 (16)0.0501 (18)0.0061 (12)0.0066 (12)0.0015 (14)
C180.0351 (16)0.0427 (17)0.058 (2)0.0027 (14)0.0141 (14)0.0021 (15)
C190.045 (2)0.094 (3)0.070 (3)0.001 (2)0.0110 (18)0.013 (2)
C200.0397 (16)0.0289 (16)0.059 (2)0.0010 (13)0.0102 (14)0.0001 (15)
C210.075 (2)0.0304 (17)0.075 (3)0.0032 (18)0.001 (2)0.0058 (17)
C220.0391 (17)0.0407 (18)0.064 (2)0.0028 (14)0.0044 (15)0.0014 (16)
C230.0426 (18)0.047 (2)0.080 (3)0.0077 (17)0.0171 (17)0.0151 (19)
C240.0399 (17)0.0351 (17)0.081 (3)0.0040 (15)0.0086 (16)0.0033 (18)
C250.0441 (17)0.047 (2)0.0472 (19)0.0039 (16)0.0125 (14)0.0014 (16)
C260.069 (3)0.088 (3)0.061 (3)0.021 (3)0.006 (2)0.005 (2)
C270.092 (3)0.052 (2)0.076 (3)0.026 (2)0.019 (2)0.006 (2)
C280.046 (2)0.062 (3)0.114 (4)0.016 (2)0.005 (2)0.007 (3)
C290.102 (4)0.106 (4)0.055 (3)0.007 (3)0.027 (2)0.011 (3)
C300.151 (5)0.108 (4)0.066 (3)0.082 (4)0.001 (3)0.027 (3)
C310.131 (4)0.065 (3)0.073 (3)0.041 (3)0.041 (3)0.007 (2)
C320.0295 (14)0.057 (2)0.0486 (18)0.0005 (14)0.0070 (13)0.0032 (16)
Geometric parameters (Å, º) top
O1—C291.413 (6)C16—H16B0.9900
O1—C31.434 (4)C17—C201.557 (4)
C1—C21.517 (5)C17—H171.0000
C1—C101.531 (5)C18—H18A0.9800
C1—H1A0.9900C18—H18B0.9800
C1—H1B0.9900C18—H18C0.9800
C2—C31.498 (6)C19—H19A0.9900
C2—H2A0.9900C19—H19B0.9900
C2—H2B0.9900C20—C221.521 (5)
C3—C41.534 (5)C20—C211.539 (5)
C3—H31.0000C20—H201.0000
C4—C311.521 (6)C21—H21A0.9800
C4—C51.550 (5)C21—H21B0.9800
C4—C301.560 (6)C21—H21C0.9800
C5—C101.532 (5)C22—C231.506 (5)
C5—C61.534 (4)C22—H22A0.9900
C5—H51.0000C22—H22B0.9900
C6—C71.520 (5)C23—C241.523 (5)
C6—H6A0.9900C23—H23A0.9900
C6—H6B0.9900C23—H23B0.9900
C7—C81.534 (4)C24—C251.495 (5)
C7—H7A0.9900C24—C281.555 (5)
C7—H7B0.9900C24—H241.0000
C8—C91.530 (4)C25—C261.307 (6)
C8—C141.532 (4)C25—C271.490 (5)
C8—H81.0000C26—H26A0.9500
C9—C111.497 (5)C26—H26B0.9500
C9—C101.520 (5)C27—H27A0.9800
C9—C191.557 (5)C27—H27B0.9800
C10—C191.474 (5)C27—H27C0.9800
C11—C121.534 (5)C28—H28A0.9800
C11—H11A0.9900C28—H28B0.9800
C11—H11B0.9900C28—H28C0.9800
C12—C131.520 (4)C29—H29A0.9800
C12—H12A0.9900C29—H29B0.9800
C12—H12B0.9900C29—H29C0.9800
C13—C181.547 (4)C30—H30A0.9800
C13—C171.553 (4)C30—H30B0.9800
C13—C141.561 (4)C30—H30C0.9800
C14—C151.536 (4)C31—H31A0.9800
C14—C321.547 (4)C31—H31B0.9800
C15—C161.537 (4)C31—H31C0.9800
C15—H15A0.9900C32—H32A0.9800
C15—H15B0.9900C32—H32B0.9800
C16—C171.551 (4)C32—H32C0.9800
C16—H16A0.9900
C29—O1—C3113.6 (3)C15—C16—H16B110.3
C2—C1—C10109.2 (3)C17—C16—H16B110.3
C2—C1—H1A109.8H16A—C16—H16B108.6
C10—C1—H1A109.8C16—C17—C13103.0 (2)
C2—C1—H1B109.8C16—C17—C20112.1 (2)
C10—C1—H1B109.8C13—C17—C20120.0 (3)
H1A—C1—H1B108.3C16—C17—H17107.0
C3—C2—C1110.7 (3)C13—C17—H17107.0
C3—C2—H2A109.5C20—C17—H17107.0
C1—C2—H2A109.5C13—C18—H18A109.5
C3—C2—H2B109.5C13—C18—H18B109.5
C1—C2—H2B109.5H18A—C18—H18B109.5
H2A—C2—H2B108.1C13—C18—H18C109.5
O1—C3—C2111.1 (3)H18A—C18—H18C109.5
O1—C3—C4107.8 (3)H18B—C18—H18C109.5
C2—C3—C4113.9 (3)C10—C19—C960.1 (2)
O1—C3—H3107.9C10—C19—H19A117.8
C2—C3—H3107.9C9—C19—H19A117.8
C4—C3—H3107.9C10—C19—H19B117.8
C31—C4—C3109.2 (3)C9—C19—H19B117.8
C31—C4—C5110.0 (3)H19A—C19—H19B114.9
C3—C4—C5108.1 (3)C22—C20—C21110.0 (3)
C31—C4—C30108.2 (4)C22—C20—C17111.1 (3)
C3—C4—C30111.2 (3)C21—C20—C17110.7 (3)
C5—C4—C30110.2 (4)C22—C20—H20108.3
C10—C5—C6112.2 (3)C21—C20—H20108.3
C10—C5—C4114.5 (3)C17—C20—H20108.3
C6—C5—C4114.5 (3)C20—C21—H21A109.5
C10—C5—H5104.7C20—C21—H21B109.5
C6—C5—H5104.7H21A—C21—H21B109.5
C4—C5—H5104.7C20—C21—H21C109.5
C7—C6—C5110.4 (3)H21A—C21—H21C109.5
C7—C6—H6A109.6H21B—C21—H21C109.5
C5—C6—H6A109.6C23—C22—C20115.6 (3)
C7—C6—H6B109.6C23—C22—H22A108.4
C5—C6—H6B109.6C20—C22—H22A108.4
H6A—C6—H6B108.1C23—C22—H22B108.4
C6—C7—C8111.5 (3)C20—C22—H22B108.4
C6—C7—H7A109.3H22A—C22—H22B107.4
C8—C7—H7A109.3C22—C23—C24114.4 (3)
C6—C7—H7B109.3C22—C23—H23A108.7
C8—C7—H7B109.3C24—C23—H23A108.7
H7A—C7—H7B108.0C22—C23—H23B108.7
C9—C8—C14112.9 (2)C24—C23—H23B108.7
C9—C8—C7112.1 (3)H23A—C23—H23B107.6
C14—C8—C7114.1 (3)C25—C24—C23112.4 (3)
C9—C8—H8105.6C25—C24—C28111.3 (3)
C14—C8—H8105.6C23—C24—C28111.1 (3)
C7—C8—H8105.6C25—C24—H24107.2
C11—C9—C10117.5 (3)C23—C24—H24107.2
C11—C9—C8118.3 (3)C28—C24—H24107.2
C10—C9—C8118.6 (3)C26—C25—C27121.3 (4)
C11—C9—C19118.3 (3)C26—C25—C24121.6 (4)
C10—C9—C1957.2 (2)C27—C25—C24117.1 (3)
C8—C9—C19112.3 (3)C25—C26—H26A120.0
C19—C10—C962.6 (3)C25—C26—H26B120.0
C19—C10—C1114.4 (3)H26A—C26—H26B120.0
C9—C10—C1119.6 (3)C25—C27—H27A109.5
C19—C10—C5124.6 (4)C25—C27—H27B109.5
C9—C10—C5120.0 (3)H27A—C27—H27B109.5
C1—C10—C5109.3 (3)C25—C27—H27C109.5
C9—C11—C12119.2 (3)H27A—C27—H27C109.5
C9—C11—H11A107.5H27B—C27—H27C109.5
C12—C11—H11A107.5C24—C28—H28A109.5
C9—C11—H11B107.5C24—C28—H28B109.5
C12—C11—H11B107.5H28A—C28—H28B109.5
H11A—C11—H11B107.0C24—C28—H28C109.5
C13—C12—C11113.5 (3)H28A—C28—H28C109.5
C13—C12—H12A108.9H28B—C28—H28C109.5
C11—C12—H12A108.9O1—C29—H29A109.5
C13—C12—H12B108.9O1—C29—H29B109.5
C11—C12—H12B108.9H29A—C29—H29B109.5
H12A—C12—H12B107.7O1—C29—H29C109.5
C12—C13—C18108.0 (3)H29A—C29—H29C109.5
C12—C13—C17117.6 (3)H29B—C29—H29C109.5
C18—C13—C17109.2 (3)C4—C30—H30A109.5
C12—C13—C14109.2 (2)C4—C30—H30B109.5
C18—C13—C14110.9 (2)H30A—C30—H30B109.5
C17—C13—C14101.8 (2)C4—C30—H30C109.5
C8—C14—C15114.7 (2)H30A—C30—H30C109.5
C8—C14—C32110.2 (2)H30B—C30—H30C109.5
C15—C14—C32107.5 (3)C4—C31—H31A109.5
C8—C14—C13110.7 (2)C4—C31—H31B109.5
C15—C14—C13102.3 (2)H31A—C31—H31B109.5
C32—C14—C13111.2 (3)C4—C31—H31C109.5
C14—C15—C16105.8 (2)H31A—C31—H31C109.5
C14—C15—H15A110.6H31B—C31—H31C109.5
C16—C15—H15A110.6C14—C32—H32A109.5
C14—C15—H15B110.6C14—C32—H32B109.5
C16—C15—H15B110.6H32A—C32—H32B109.5
H15A—C15—H15B108.7C14—C32—H32C109.5
C15—C16—C17107.1 (2)H32A—C32—H32C109.5
C15—C16—H16A110.3H32B—C32—H32C109.5
C17—C16—H16A110.3
C10—C1—C2—C360.8 (4)C9—C11—C12—C135.2 (5)
C29—O1—C3—C266.9 (5)C11—C12—C13—C1878.4 (4)
C29—O1—C3—C4167.6 (4)C11—C12—C13—C17157.4 (3)
C1—C2—C3—O1179.2 (3)C11—C12—C13—C1442.2 (4)
C1—C2—C3—C458.8 (4)C9—C8—C14—C15157.4 (2)
O1—C3—C4—C3164.9 (4)C7—C8—C14—C1573.0 (3)
C2—C3—C4—C31171.3 (3)C9—C8—C14—C3281.1 (3)
O1—C3—C4—C5175.4 (3)C7—C8—C14—C3248.5 (3)
C2—C3—C4—C551.6 (4)C9—C8—C14—C1342.3 (3)
O1—C3—C4—C3054.3 (5)C7—C8—C14—C13171.9 (2)
C2—C3—C4—C3069.5 (5)C12—C13—C14—C868.0 (3)
C31—C4—C5—C10169.8 (3)C18—C13—C14—C850.9 (3)
C3—C4—C5—C1050.6 (4)C17—C13—C14—C8167.0 (2)
C30—C4—C5—C1071.0 (4)C12—C13—C14—C15169.3 (3)
C31—C4—C5—C658.5 (4)C18—C13—C14—C1571.8 (3)
C3—C4—C5—C6177.7 (3)C17—C13—C14—C1544.3 (3)
C30—C4—C5—C660.7 (4)C12—C13—C14—C3254.8 (3)
C10—C5—C6—C751.3 (4)C18—C13—C14—C32173.8 (3)
C4—C5—C6—C7175.9 (3)C17—C13—C14—C3270.1 (3)
C5—C6—C7—C865.7 (3)C8—C14—C15—C16151.6 (3)
C6—C7—C8—C952.5 (3)C32—C14—C15—C1685.5 (3)
C6—C7—C8—C14177.5 (2)C13—C14—C15—C1631.6 (3)
C14—C8—C9—C115.7 (4)C14—C15—C16—C177.0 (3)
C7—C8—C9—C11124.9 (3)C15—C16—C17—C1320.6 (3)
C14—C8—C9—C10158.6 (3)C15—C16—C17—C20150.9 (3)
C7—C8—C9—C1028.0 (4)C12—C13—C17—C16159.0 (3)
C14—C8—C9—C19137.7 (3)C18—C13—C17—C1677.5 (3)
C7—C8—C9—C1991.7 (3)C14—C13—C17—C1639.8 (3)
C11—C9—C10—C19107.5 (4)C12—C13—C17—C2075.7 (4)
C8—C9—C10—C1999.4 (3)C18—C13—C17—C2047.8 (4)
C11—C9—C10—C13.5 (5)C14—C13—C17—C20165.1 (2)
C8—C9—C10—C1156.6 (3)C1—C10—C19—C9112.1 (3)
C19—C9—C10—C1104.0 (4)C5—C10—C19—C9109.0 (4)
C11—C9—C10—C5136.4 (3)C11—C9—C19—C10106.1 (4)
C8—C9—C10—C516.7 (4)C8—C9—C19—C10110.6 (3)
C19—C9—C10—C5116.0 (4)C16—C17—C20—C2254.8 (3)
C2—C1—C10—C1986.4 (4)C13—C17—C20—C22175.8 (3)
C2—C1—C10—C9157.6 (3)C16—C17—C20—C21177.3 (3)
C2—C1—C10—C558.6 (4)C13—C17—C20—C2161.8 (4)
C6—C5—C10—C1947.9 (5)C21—C20—C22—C2367.8 (4)
C4—C5—C10—C1984.9 (4)C17—C20—C22—C23169.3 (3)
C6—C5—C10—C927.8 (4)C20—C22—C23—C24179.6 (3)
C4—C5—C10—C9160.6 (3)C22—C23—C24—C2560.3 (4)
C6—C5—C10—C1171.5 (3)C22—C23—C24—C28174.2 (3)
C4—C5—C10—C155.7 (4)C23—C24—C25—C26124.7 (4)
C10—C9—C11—C12175.6 (3)C28—C24—C25—C26109.9 (4)
C8—C9—C11—C1231.2 (5)C23—C24—C25—C2756.3 (4)
C19—C9—C11—C12110.0 (4)C28—C24—C25—C2769.1 (4)

Experimental details

Crystal data
Chemical formulaC32H54O
Mr454.75
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.8812 (2), 8.5040 (3), 47.7465 (9)
V3)2794.02 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.28 × 0.06
Data collection
DiffractometerBruker APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.874, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
21111, 2926, 2433
Rint0.099
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.162, 1.08
No. of reflections2926
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

NJ and HuR thank the Higher Education Commission of Pakistan for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtta-ur-Rahman, Sultana, N., Khan, M. R. & Choudhary, M. I. (2002). Nat. Prod. Lett. 16, 305–313.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukingham, J. (1982). Dictionary of Organic Compounds, p. 185. New York: Champman and Hall.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDhaneshwar, N. N., Puranik, V. G., Tavale, S. S., Guru Row, T. N., Bhat, V. S. & Joshi, V. S. (1986). Acta Cryst. C42, 595–597.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, Y., Jia, W., Takaishi, Y. & Duan, H.-Q. (2006). Acta Cryst. E62, o4884–o4886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolunin, O. & Stainton, A. (1984). Flowers of the Himalayas, pp. 432–436. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds