organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5,6-Tri-O-acetyl-2,3-di-S-ethyl-2,3-di­thio-D-allose di­ethyl di­thio­acetal

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bSchool of Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: qpwu@bit.edu.cn

(Received 14 April 2009; accepted 27 April 2009; online 7 May 2009)

The title compound, C20H36O6S4, was obtained by ethanethiol­ysis of 3,5,6-tri-O-acetyl-1,2-O-isopropyl­idene-α-D-gluco­furan­­ose. One of the ethyl groups is disordered over two sites with refined occupancies of 0.869 (6) and 0.131 (6). Compared with the precursor, the absolute configuration of the stereocenters at positions C-3 and C-2 are inverted and maintained, respectively.

Related literature

For the bioactiviy of nucleosides, see: Zhang et al. (2007[Zhang, J., Visser, F., King, K. M., Baldwin, S. A., Young, J. D. & Cass, C. E. (2007). Cancer Metastasis Rev. 26, 85-110.]); Merino et al. (2008[Merino, P., Tejero, T. & Delso, I. (2008). Curr. Med. Chem. 15, 954-967.]). For the structure of the precursor, 3,5,6-tri-O-acetyl-1,2-O-isopropyl­idene-α-D-glucofuran­ose, see: Wu et al. (2009[Wu, Q.-P., Xi, X.-D., Li, H. & Zhang, Q.-Sh. (2009). Chin. J. Chem. In the press.]). For related structures, see: Bethel & Ferrier (1972[Bethel, G. S. & Ferrier, R. J. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1033-1037.]); Berrang & Hortor (1970[Berrang, B. & Hortor, D. (1970). Chem. Commun. pp. 1038-1039.]); Divjaković et al. (1992[Divjaković, V., Miljković, D., Lajšić, S. & Klement, U. (1992). Acta Cryst. C48, 1685-1686.]).

[Scheme 1]

Experimental

Crystal data
  • C20H36O6S4

  • Mr = 500.73

  • Monoclinic, P 21

  • a = 8.3395 (12) Å

  • b = 16.726 (2) Å

  • c = 9.2027 (14) Å

  • β = 95.772 (5)°

  • V = 1277.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 113 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.902, Tmax = 0.931

  • 16052 measured reflections

  • 6060 independent reflections

  • 5802 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.066

  • S = 1.04

  • 6060 reflections

  • 298 parameters

  • 23 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2919 Friedel pairs

  • Flack parameter: −0.03 (4)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nucleosides are important compounds due to their extensive bioactivity in antitumor and antivirus (Zhang et al., 2007, Merino et al., 2008). In the course of our studies in the synthesis of nucleoside analogues, an ethanethio substituted thioacetal product was obtained as ethanethiolysis of 3,5,6-tri-O-acetyl-1,2-O-isopropylidene-α-D-glucofuranose (Wu et al., 2009). The purpose of the structure determination was to establish the position of the substituents of the ethanethio groups and the molecular conformation of the title compound. In contrast to its precursor, the absolute configuration of C-3 and C-2 are inverted and maintained, respectively, which is similar to the documented results (Berrang & Hortor, 1970; Bethel & Ferrier, 1972), but disagrees with the molecular structure reported by Divjaković (Divjakovic et al., 1992). Both the molecular conformation and structure are consistent with our desired intermediates for the synthesis of the corresponding 2',3'-dideoxy-2',3'-dimercaptoribonucleosides.

Related literature top

For the bioactiviy of nucleosides, see: Zhang et al. (2007); Merino et al. (2008). For the structure of the precursro, 3,5,6-tri-O-acetyl-1,2-O-isopropylidene-α-D-glucofuranose, see: Wu et al. (2009). For related structures, see: Bethel & Ferrier (1972); Berrang & Hortor (1970); Divjaković et al. (1992).

Experimental top

ZnBr2 (0.54 g, 2.4 mmol) was added to a solution of 3,5,6-tri-O-acetyl-1,2-O-isopropylidene-α-D-glucofuranose (0.67 g, 2.0 mmol) and ethanethiol (0.78 ml, 10 mmol) in dry CH2Cl2 (10 ml). After 5 h, saturated aqueous solution of NaHCO3 (20 ml) was added and separated. The organic layer was washed with brine, dried with MgSO4 and concentrated under reduced pressure. The residue was isolated through short column chromatography on silica gel, which was eluded with EtOAc-petroleum to give the target compound (0.78 g, 78%). M. p. 62°, 1H-NMR(CDCl3, p.p.m.): 1.28 (m, 12 H), 2.06 (m, 9 H), 2.75 (m, 8 H), 3.07 (dd, 1 H), 3.48 (dd, 1 H), 4.20 (m, 1 H), 4.49 (dd, 1 H), 4.6 4 (d, 1 H), 5.54 (m, 1 H), 5.89 (dd, 1 H); 13C-NMR(CDCl3, p.p.m.):14.60, 14.74, 14.85, 14.92, 15.02, 21.23, 21.27, 25.79, 26.39, 28.31, 30.24, 51.47, 57.30, 57.48, 62.56, 71.96, 72.78, 169.19, 169.61, 170.82; HRMS (EI) m/z calculated for C20H36O6S4 500.13, found 500.14.

50 mg of the obtained product was dissolved in petroleum ether (5 ml) and the solution was kept at room temperature for 2 days to give colorless single crystals.

Refinement top

C—H were included in the riding model approximation with C—H distances 0.98–1.00 Å, and with Uiso=1.2Ueq(C) or 1.5Ueq(Cmethyl).

One of the ethyl groups is disordered over two sites with refined occupancies of 0.869 (6) and 0.131 (6). The restained distance of C13—C14 refined to 1.513 (4)Å and C13'-C14' refined to 1.502 (19) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal displacement ellipsoids drawn at the 30% probability level. Open bonds show the disorder component.
4,5,6-Tri-O-acetyl-2,3-di-S-ethyl-2,3-dithio-D-allose diethyl dithioacetal top
Crystal data top
C20H36O6S4F(000) = 536
Mr = 500.73Dx = 1.302 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 4760 reflections
a = 8.3395 (12) Åθ = 2.2–27.9°
b = 16.726 (2) ŵ = 0.40 mm1
c = 9.2027 (14) ÅT = 113 K
β = 95.772 (5)°Block, colorless
V = 1277.2 (3) Å30.26 × 0.20 × 0.18 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
6060 independent reflections
Radiation source: rotating anode5802 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.032
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2122
Tmin = 0.902, Tmax = 0.931l = 1212
16052 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0326P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6060 reflectionsΔρmax = 0.20 e Å3
298 parametersΔρmin = 0.29 e Å3
23 restraintsAbsolute structure: Flack (1983), 2919 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C20H36O6S4V = 1277.2 (3) Å3
Mr = 500.73Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3395 (12) ŵ = 0.40 mm1
b = 16.726 (2) ÅT = 113 K
c = 9.2027 (14) Å0.26 × 0.20 × 0.18 mm
β = 95.772 (5)°
Data collection top
Rigaku Saturn
diffractometer
6060 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
5802 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.931Rint = 0.032
16052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.29 e Å3
6060 reflectionsAbsolute structure: Flack (1983), 2919 Friedel pairs
298 parametersAbsolute structure parameter: 0.03 (4)
23 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74081 (5)0.08494 (3)0.79166 (5)0.02103 (10)
S20.70511 (5)0.08746 (3)0.88989 (5)0.02203 (10)
S30.41930 (5)0.00547 (3)0.66199 (5)0.01940 (10)
S40.85901 (5)0.02564 (3)0.42590 (5)0.02148 (10)
O10.56270 (15)0.06561 (7)0.23706 (13)0.0182 (3)
O20.32000 (18)0.12020 (10)0.25917 (18)0.0405 (4)
O30.54225 (14)0.14186 (7)0.33931 (12)0.0169 (3)
O40.68402 (15)0.21225 (8)0.18563 (14)0.0269 (3)
O50.25647 (13)0.10093 (8)0.19236 (13)0.0209 (3)
O60.26208 (18)0.22570 (8)0.10243 (18)0.0378 (4)
C10.74322 (19)0.02080 (11)0.74033 (17)0.0171 (3)
H10.85210.03360.70990.021*
C20.61765 (18)0.03465 (11)0.60845 (18)0.0156 (3)
H20.61430.09330.58730.019*
C30.66042 (18)0.00888 (10)0.46908 (17)0.0147 (3)
H30.67080.06700.49330.018*
C40.53286 (19)0.00125 (11)0.33657 (17)0.0148 (3)
H40.42240.00680.36890.018*
C50.5413 (2)0.07353 (10)0.24304 (18)0.0164 (4)
H50.64400.07270.19570.020*
C60.3999 (2)0.08169 (12)0.12490 (18)0.0202 (4)
H6A0.42270.12440.05540.024*
H6B0.38430.03090.07000.024*
C70.8968 (2)0.08772 (14)0.94224 (19)0.0284 (4)
H7A0.87630.04441.01120.034*
H7B0.88880.13910.99440.034*
C81.0684 (2)0.07889 (15)0.9010 (3)0.0398 (5)
H8A1.09260.12300.83660.060*
H8B1.14410.08010.98960.060*
H8C1.07880.02790.85030.060*
C90.8906 (2)0.14400 (14)0.9124 (2)0.0311 (5)
H9A0.89240.17591.00310.037*
H9B0.98210.10610.92470.037*
C100.9154 (3)0.19954 (14)0.7876 (3)0.0395 (5)
H10A0.92220.16830.69840.059*
H10B1.01550.22970.81040.059*
H10C0.82450.23680.77290.059*
C110.2932 (2)0.08823 (13)0.59307 (19)0.0237 (4)
H11A0.31060.09750.48960.028*
H11B0.17890.07300.59620.028*
C120.3242 (2)0.16570 (13)0.6765 (2)0.0302 (5)
H12A0.29850.15850.77730.045*
H12B0.25610.20800.62960.045*
H12C0.43780.18060.67660.045*
C130.9482 (3)0.06248 (16)0.3541 (3)0.0317 (8)0.869 (6)
H13A0.86770.08830.28260.038*0.869 (6)
H13B1.04060.04610.30130.038*0.869 (6)
C141.0059 (4)0.1230 (2)0.4699 (3)0.0428 (9)0.869 (6)
H14A1.09050.09910.53780.064*0.869 (6)
H14B1.04900.17000.42330.064*0.869 (6)
H14C0.91540.13920.52350.064*0.869 (6)
C13'0.9867 (15)0.0625 (8)0.4615 (17)0.024 (5)0.131 (6)
H13C1.09670.04880.43790.029*0.131 (6)
H13D0.99370.07410.56740.029*0.131 (6)
C14'0.935 (2)0.1377 (8)0.381 (2)0.036 (4)0.131 (6)
H14D0.85730.16650.43390.054*0.131 (6)
H14E1.02970.17170.37220.054*0.131 (6)
H14F0.88550.12400.28270.054*0.131 (6)
C150.4443 (2)0.12014 (11)0.20382 (19)0.0200 (4)
C160.4899 (3)0.17588 (12)0.0885 (2)0.0277 (4)
H16A0.41550.22140.08050.042*
H16B0.60000.19520.11430.042*
H16C0.48430.14770.00530.042*
C170.6157 (2)0.20907 (11)0.2941 (2)0.0209 (4)
C180.5959 (3)0.27634 (12)0.3979 (2)0.0326 (5)
H18A0.64850.32440.36440.049*
H18B0.64540.26170.49540.049*
H18C0.48100.28710.40210.049*
C190.2065 (2)0.17773 (11)0.1783 (2)0.0221 (4)
C200.0766 (2)0.19526 (13)0.2743 (2)0.0301 (5)
H20A0.12460.20330.37480.045*
H20B0.00120.15020.27120.045*
H20C0.01870.24370.23970.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (2)0.0209 (2)0.0183 (2)0.00083 (19)0.00179 (18)0.00364 (18)
S20.0236 (2)0.0275 (2)0.0155 (2)0.00207 (19)0.00384 (17)0.00323 (19)
S30.0155 (2)0.0251 (2)0.0183 (2)0.00173 (18)0.00489 (16)0.00091 (18)
S40.01363 (19)0.0294 (3)0.0218 (2)0.00129 (18)0.00362 (16)0.00257 (19)
O10.0183 (6)0.0201 (7)0.0166 (6)0.0007 (5)0.0034 (5)0.0072 (5)
O20.0312 (8)0.0411 (9)0.0523 (10)0.0176 (7)0.0194 (7)0.0234 (8)
O30.0213 (6)0.0138 (6)0.0157 (6)0.0013 (5)0.0026 (5)0.0002 (5)
O40.0221 (7)0.0292 (8)0.0298 (7)0.0023 (6)0.0050 (6)0.0102 (6)
O50.0175 (6)0.0194 (7)0.0253 (7)0.0012 (5)0.0005 (5)0.0021 (5)
O60.0368 (8)0.0244 (8)0.0556 (10)0.0038 (6)0.0209 (8)0.0118 (7)
C10.0174 (8)0.0212 (9)0.0128 (8)0.0003 (7)0.0018 (6)0.0010 (7)
C20.0128 (8)0.0171 (8)0.0167 (8)0.0016 (7)0.0006 (6)0.0001 (6)
C30.0146 (8)0.0165 (9)0.0133 (8)0.0000 (7)0.0028 (6)0.0000 (7)
C40.0153 (8)0.0159 (8)0.0132 (8)0.0026 (7)0.0009 (6)0.0056 (7)
C50.0152 (8)0.0166 (9)0.0172 (9)0.0016 (7)0.0016 (6)0.0023 (7)
C60.0209 (9)0.0257 (10)0.0138 (8)0.0023 (8)0.0011 (7)0.0024 (7)
C70.0352 (10)0.0305 (11)0.0176 (9)0.0017 (9)0.0064 (8)0.0041 (9)
C80.0276 (11)0.0400 (13)0.0482 (14)0.0029 (10)0.0139 (9)0.0012 (11)
C90.0263 (10)0.0344 (12)0.0317 (11)0.0028 (9)0.0008 (8)0.0138 (9)
C100.0338 (11)0.0283 (12)0.0586 (15)0.0064 (10)0.0160 (11)0.0079 (11)
C110.0174 (8)0.0356 (11)0.0182 (9)0.0039 (8)0.0029 (7)0.0010 (9)
C120.0293 (11)0.0346 (12)0.0271 (11)0.0066 (9)0.0041 (8)0.0036 (9)
C130.0213 (12)0.0515 (18)0.0234 (15)0.0072 (11)0.0073 (10)0.0077 (11)
C140.0442 (17)0.046 (2)0.0393 (18)0.0195 (14)0.0118 (13)0.0025 (14)
C13'0.007 (7)0.045 (12)0.022 (10)0.005 (6)0.004 (6)0.002 (7)
C14'0.032 (7)0.024 (7)0.050 (8)0.010 (6)0.009 (6)0.005 (6)
C150.0265 (10)0.0197 (9)0.0138 (9)0.0023 (8)0.0025 (7)0.0008 (7)
C160.0377 (11)0.0240 (10)0.0222 (10)0.0048 (9)0.0067 (8)0.0076 (8)
C170.0155 (8)0.0178 (9)0.0281 (10)0.0003 (7)0.0037 (7)0.0074 (8)
C180.0386 (12)0.0200 (10)0.0382 (13)0.0062 (9)0.0003 (10)0.0018 (8)
C190.0166 (8)0.0230 (10)0.0253 (10)0.0003 (8)0.0043 (7)0.0008 (8)
C200.0242 (10)0.0332 (12)0.0329 (12)0.0057 (9)0.0033 (8)0.0084 (9)
Geometric parameters (Å, º) top
S1—C71.8035 (18)C9—C101.507 (3)
S1—C11.8313 (19)C9—H9A0.9900
S2—C91.807 (2)C9—H9B0.9900
S2—C11.8238 (17)C10—H10A0.9800
S3—C111.814 (2)C10—H10B0.9800
S3—C21.8387 (16)C10—H10C0.9800
S4—C131.806 (2)C11—C121.515 (3)
S4—C13'1.829 (13)C11—H11A0.9900
S4—C31.8348 (16)C11—H11B0.9900
O1—C151.357 (2)C12—H12A0.9800
O1—C41.4510 (19)C12—H12B0.9800
O2—C151.200 (2)C12—H12C0.9800
O3—C171.365 (2)C13—C141.513 (4)
O3—C51.446 (2)C13—H13A0.9900
O4—C171.199 (2)C13—H13B0.9900
O5—C191.352 (2)C14—H14A0.9800
O5—C61.439 (2)C14—H14B0.9800
O6—C191.188 (2)C14—H14C0.9800
C1—C21.539 (2)C13'—C14'1.502 (19)
C1—H11.0000C13'—H13C0.9900
C2—C31.547 (2)C13'—H13D0.9900
C2—H21.0000C14'—H14D0.9800
C3—C41.541 (2)C14'—H14E0.9800
C3—H31.0000C14'—H14F0.9800
C4—C51.524 (2)C15—C161.491 (2)
C4—H41.0000C16—H16A0.9800
C5—C61.527 (2)C16—H16B0.9800
C5—H51.0000C16—H16C0.9800
C6—H6A0.9900C17—C181.496 (3)
C6—H6B0.9900C18—H18A0.9800
C7—C81.524 (3)C18—H18B0.9800
C7—H7A0.9900C18—H18C0.9800
C7—H7B0.9900C19—C201.495 (3)
C8—H8A0.9800C20—H20A0.9800
C8—H8B0.9800C20—H20B0.9800
C8—H8C0.9800C20—H20C0.9800
C7—S1—C1101.38 (9)C9—C10—H10A109.5
C9—S2—C1101.20 (9)C9—C10—H10B109.5
C11—S3—C2102.08 (8)H10A—C10—H10B109.5
C13—S4—C13'32.2 (5)C9—C10—H10C109.5
C13—S4—C3103.66 (10)H10A—C10—H10C109.5
C13'—S4—C3103.3 (4)H10B—C10—H10C109.5
C15—O1—C4118.30 (13)C12—C11—S3114.35 (13)
C17—O3—C5116.06 (13)C12—C11—H11A108.7
C19—O5—C6115.63 (14)S3—C11—H11A108.7
C2—C1—S2110.29 (11)C12—C11—H11B108.7
C2—C1—S1108.94 (11)S3—C11—H11B108.7
S2—C1—S1112.86 (9)H11A—C11—H11B107.6
C2—C1—H1108.2C11—C12—H12A109.5
S2—C1—H1108.2C11—C12—H12B109.5
S1—C1—H1108.2H12A—C12—H12B109.5
C1—C2—C3112.81 (13)C11—C12—H12C109.5
C1—C2—S3107.93 (11)H12A—C12—H12C109.5
C3—C2—S3112.69 (11)H12B—C12—H12C109.5
C1—C2—H2107.7C14—C13—S4113.70 (19)
C3—C2—H2107.7C14—C13—H13A108.8
S3—C2—H2107.7S4—C13—H13A108.8
C4—C3—C2114.75 (13)C14—C13—H13B108.8
C4—C3—S4111.65 (11)S4—C13—H13B108.8
C2—C3—S4108.65 (11)H13A—C13—H13B107.7
C4—C3—H3107.1C14'—C13'—S4117.0 (11)
C2—C3—H3107.1C14'—C13'—H13C108.0
S4—C3—H3107.1S4—C13'—H13C108.0
O1—C4—C5103.41 (12)C14'—C13'—H13D108.0
O1—C4—C3106.83 (13)S4—C13'—H13D108.0
C5—C4—C3116.60 (14)H13C—C13'—H13D107.3
O1—C4—H4109.9C13'—C14'—H14D109.5
C5—C4—H4109.9C13'—C14'—H14E109.5
C3—C4—H4109.9H14D—C14'—H14E109.5
O3—C5—C4107.49 (13)C13'—C14'—H14F109.5
O3—C5—C6108.79 (13)H14D—C14'—H14F109.5
C4—C5—C6113.55 (14)H14E—C14'—H14F109.5
O3—C5—H5109.0O2—C15—O1123.03 (17)
C4—C5—H5109.0O2—C15—C16126.52 (18)
C6—C5—H5109.0O1—C15—C16110.42 (15)
O5—C6—C5109.18 (13)C15—C16—H16A109.5
O5—C6—H6A109.8C15—C16—H16B109.5
C5—C6—H6A109.8H16A—C16—H16B109.5
O5—C6—H6B109.8C15—C16—H16C109.5
C5—C6—H6B109.8H16A—C16—H16C109.5
H6A—C6—H6B108.3H16B—C16—H16C109.5
C8—C7—S1115.40 (14)O4—C17—O3123.77 (18)
C8—C7—H7A108.4O4—C17—C18126.18 (18)
S1—C7—H7A108.4O3—C17—C18110.05 (15)
C8—C7—H7B108.4C17—C18—H18A109.5
S1—C7—H7B108.4C17—C18—H18B109.5
H7A—C7—H7B107.5H18A—C18—H18B109.5
C7—C8—H8A109.5C17—C18—H18C109.5
C7—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
C7—C8—H8C109.5O6—C19—O5124.29 (17)
H8A—C8—H8C109.5O6—C19—C20124.31 (18)
H8B—C8—H8C109.5O5—C19—C20111.37 (16)
C10—C9—S2114.64 (15)C19—C20—H20A109.5
C10—C9—H9A108.6C19—C20—H20B109.5
S2—C9—H9A108.6H20A—C20—H20B109.5
C10—C9—H9B108.6C19—C20—H20C109.5
S2—C9—H9B108.6H20A—C20—H20C109.5
H9A—C9—H9B107.6H20B—C20—H20C109.5
C9—S2—C1—C2119.35 (13)S4—C3—C4—C539.69 (17)
C9—S2—C1—S1118.55 (11)C17—O3—C5—C4153.04 (14)
C7—S1—C1—C2178.77 (11)C17—O3—C5—C683.62 (17)
C7—S1—C1—S258.37 (11)O1—C4—C5—O3169.73 (12)
S2—C1—C2—C3169.79 (11)C3—C4—C5—O352.85 (18)
S1—C1—C2—C365.83 (15)O1—C4—C5—C669.89 (16)
S2—C1—C2—S365.04 (13)C3—C4—C5—C6173.23 (13)
S1—C1—C2—S359.34 (13)C19—O5—C6—C5104.90 (17)
C11—S3—C2—C1134.39 (12)O3—C5—C6—O548.42 (19)
C11—S3—C2—C3100.37 (12)C4—C5—C6—O571.22 (18)
C1—C2—C3—C4176.29 (14)C1—S1—C7—C871.74 (18)
S3—C2—C3—C453.74 (17)C1—S2—C9—C1068.51 (17)
C1—C2—C3—S457.96 (16)C2—S3—C11—C1271.05 (15)
S3—C2—C3—S4179.49 (9)C13'—S4—C13—C1418.1 (8)
C13—S4—C3—C487.95 (15)C3—S4—C13—C1475.1 (2)
C13'—S4—C3—C4121.1 (5)C13—S4—C13'—C14'38.2 (11)
C13—S4—C3—C2144.51 (13)C3—S4—C13'—C14'56.4 (13)
C13'—S4—C3—C2111.4 (5)C4—O1—C15—O24.4 (3)
C15—O1—C4—C5116.96 (15)C4—O1—C15—C16173.80 (15)
C15—O1—C4—C3119.46 (15)C5—O3—C17—O43.9 (2)
C2—C3—C4—O1160.52 (13)C5—O3—C17—C18175.50 (14)
S4—C3—C4—O175.30 (15)C6—O5—C19—O68.6 (3)
C2—C3—C4—C584.49 (17)C6—O5—C19—C20169.42 (14)

Experimental details

Crystal data
Chemical formulaC20H36O6S4
Mr500.73
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)8.3395 (12), 16.726 (2), 9.2027 (14)
β (°) 95.772 (5)
V3)1277.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.902, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
16052, 6060, 5802
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.04
No. of reflections6060
No. of parameters298
No. of restraints23
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29
Absolute structureFlack (1983), 2919 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Science Foundation of China (30340070) and the Ministry of Science and Technology of China (2006 A A100216) for financial support.

References

First citationBerrang, B. & Hortor, D. (1970). Chem. Commun. pp. 1038–1039.  CrossRef Google Scholar
First citationBethel, G. S. & Ferrier, R. J. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1033–1037.  CrossRef Web of Science Google Scholar
First citationDivjaković, V., Miljković, D., Lajšić, S. & Klement, U. (1992). Acta Cryst. C48, 1685–1686.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMerino, P., Tejero, T. & Delso, I. (2008). Curr. Med. Chem. 15, 954–967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q.-P., Xi, X.-D., Li, H. & Zhang, Q.-Sh. (2009). Chin. J. Chem. In the press.  Google Scholar
First citationZhang, J., Visser, F., King, K. M., Baldwin, S. A., Young, J. D. & Cass, C. E. (2007). Cancer Metastasis Rev. 26, 85–110.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds