metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­[(N2,N2-di­methyl­pyrazin-2-amine-κN4)copper(II)]

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 19 April 2009; accepted 7 May 2009; online 14 May 2009)

The title binuclear complex, [Cu2(C2H3O2)4(C6H9N3)2], lies on an inversion center with four acetate ligands bridging two CuII ions and two monodentate N,N-dimethyl­pyrazine-2-amine ligands coordinating each CuII ion via N atoms, forming slightly distorted square-pyramidal environments.

Related literature

For related structures, see: Zhang et al. (2007[Zhang, S.-G., Liu, Q.-S. & Shi, J.-M. (2007). Acta Cryst. E63, m2082.]); Li et al. (2003[Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869-875.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C6H9N3)2]

  • Mr = 609.58

  • Triclinic, [P \overline 1]

  • a = 8.1052 (13) Å

  • b = 8.1775 (13) Å

  • c = 10.6534 (17) Å

  • α = 67.826 (2)°

  • β = 80.013 (2)°

  • γ = 87.328 (2)°

  • V = 643.84 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 298 K

  • 0.68 × 0.41 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.390, Tmax = 0.620

  • 3494 measured reflections

  • 2465 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.09

  • 2465 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O3 1.9649 (18)
Cu1—O1 1.9654 (19)
Cu1—O2 1.9738 (18)
Cu1—O4 1.9756 (18)
Cu1—N1 2.197 (2)
O3—Cu1—O1 168.16 (8)
O3—Cu1—O2 89.93 (9)
O1—Cu1—O2 90.44 (9)
O3—Cu1—O4 88.93 (8)
O1—Cu1—O4 88.32 (9)
O2—Cu1—O4 168.35 (7)
O3—Cu1—N1 94.74 (8)
O1—Cu1—N1 97.07 (8)
O2—Cu1—N1 92.23 (8)
O4—Cu1—N1 99.42 (8)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Both acetate anions and pyrazine derivatives are useful ligands and a large number of multi-atom complexes have been synthesized with these as bridging ligands (Zhang et al., 2007; Li et al., 2003). We attempted to synthesize a mixed bridged multi-nuclear CuII complex by using acetate and N,N-dimethylpyrazine-2-amine as bridging ligands. The title complex was obtained and here we report its crystal structure, (I), Fig. 1.

The unique CuII ion is in a slightly distorted square-pyramidal coordination geometry with atom N1 lying at the apex. Four acetate ligands coordinate to two symmetry-related CuII atoms, with a Cu1···Cu1i separation of 2.6326 (6) Å and inversion centre lies at the middle of the Cu1···Cu1i vector (symmetry code, (i): -x + 1, -y + 1, -z + 2) resulting in the formation of a binuclear complex. The title complex is similar to a reported binuclear CuII complex (Zhang et al., 2007) except the title complex exhibits a slightly shorter Cu—N bond and a slightly longer Cu—Cu distance.

Related literature top

For related structures, see: Zhang et al. (2007); Li et al. (2003).

Experimental top

N,N-dimethylpyrazine-2-amine (0.0954 g, 0.0696 mmol) was dissolved in 10 ml methanol and it was added into 10 ml water solution containing copper acetate (0.1390 g, 0.696 mmol), and the mixed solution was stirred for a few minutes. The blue single crystals were obtained after the solution had been allowed to stand at room temperature for five months.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C)for methyl group and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for pyrazinyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Primed atoms are related by the symmetry operator (-x + 1, -y + 1, -z + 2).
Tetra-µ-acetato-κ8O:O'-bis[(N2,N2- dimethylpyrazin-2-amine-κN4)copper(II)] top
Crystal data top
[Cu2(C2H3O2)4(C6H9N3)2]Z = 1
Mr = 609.58F(000) = 314
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1052 (13) ÅCell parameters from 2730 reflections
b = 8.1775 (13) Åθ = 2.7–28.2°
c = 10.6534 (17) ŵ = 1.71 mm1
α = 67.826 (2)°T = 298 K
β = 80.013 (2)°Block, blue
γ = 87.328 (2)°0.68 × 0.41 × 0.31 mm
V = 643.84 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2465 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.390, Tmax = 0.620k = 108
3494 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.297P]
where P = (Fo2 + 2Fc2)/3
2465 reflections(Δ/σ)max = 0.020
167 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu2(C2H3O2)4(C6H9N3)2]γ = 87.328 (2)°
Mr = 609.58V = 643.84 (18) Å3
Triclinic, P1Z = 1
a = 8.1052 (13) ÅMo Kα radiation
b = 8.1775 (13) ŵ = 1.71 mm1
c = 10.6534 (17) ÅT = 298 K
α = 67.826 (2)°0.68 × 0.41 × 0.31 mm
β = 80.013 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2465 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2317 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.620Rint = 0.016
3494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.54 e Å3
2465 reflectionsΔρmin = 0.44 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2373 (3)0.6709 (3)0.9386 (3)0.0309 (5)
C20.0727 (3)0.7590 (4)0.9109 (3)0.0471 (7)
H2A0.09030.85780.82470.071*
H2B0.02730.79950.98320.071*
H2C0.00430.67590.90720.071*
C30.6075 (3)0.7439 (3)1.0579 (3)0.0362 (6)
C40.6713 (4)0.8898 (4)1.0918 (4)0.0531 (8)
H4A0.72700.97921.00900.080*
H4B0.74870.84271.15480.080*
H4C0.57880.94061.13300.080*
C50.6480 (4)0.8180 (4)0.5613 (3)0.0480 (7)
H50.53510.84370.57680.058*
C60.7422 (4)0.9016 (4)0.4350 (3)0.0577 (9)
H60.69110.98560.36750.069*
C70.8757 (3)0.6637 (4)0.6357 (3)0.0367 (6)
H70.92560.58120.70480.044*
C80.9720 (3)0.7479 (4)0.5042 (3)0.0413 (6)
C91.2305 (5)0.8021 (6)0.3383 (4)0.0780 (12)
H9A1.17000.79800.26960.117*
H9B1.33700.74740.32940.117*
H9C1.24780.92290.32610.117*
C101.2205 (4)0.5823 (6)0.5770 (4)0.0647 (9)
H10A1.23740.63120.64300.097*
H10B1.32700.55640.53380.097*
H10C1.15380.47570.62280.097*
Cu10.57009 (3)0.57928 (4)0.87055 (3)0.02811 (13)
N10.7160 (3)0.6997 (3)0.6627 (2)0.0350 (5)
N20.9033 (4)0.8693 (4)0.4033 (3)0.0548 (7)
N31.1350 (3)0.7085 (4)0.4739 (3)0.0577 (7)
O10.4726 (3)0.3816 (3)0.8439 (2)0.0446 (5)
O20.7587 (2)0.4311 (3)0.94000 (19)0.0408 (4)
O30.6383 (2)0.7576 (3)0.9348 (2)0.0411 (4)
O40.3574 (2)0.7044 (2)0.83984 (19)0.0379 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (12)0.0292 (11)0.0330 (13)0.0015 (9)0.0048 (10)0.0099 (10)
C20.0300 (13)0.0478 (16)0.0536 (18)0.0026 (11)0.0087 (12)0.0076 (13)
C30.0276 (12)0.0386 (14)0.0479 (16)0.0033 (10)0.0077 (11)0.0221 (12)
C40.0561 (18)0.0498 (17)0.063 (2)0.0056 (14)0.0098 (15)0.0309 (15)
C50.0421 (15)0.0538 (17)0.0360 (15)0.0115 (13)0.0022 (12)0.0083 (13)
C60.064 (2)0.0578 (19)0.0297 (15)0.0184 (16)0.0014 (14)0.0023 (13)
C70.0354 (13)0.0425 (14)0.0271 (12)0.0005 (11)0.0007 (10)0.0099 (11)
C80.0405 (14)0.0440 (15)0.0341 (14)0.0037 (11)0.0065 (11)0.0139 (12)
C90.061 (2)0.088 (3)0.065 (2)0.010 (2)0.0353 (19)0.024 (2)
C100.0394 (17)0.088 (3)0.072 (2)0.0077 (16)0.0050 (16)0.039 (2)
Cu10.02545 (18)0.03205 (19)0.02278 (18)0.00127 (12)0.00141 (12)0.00789 (13)
N10.0349 (11)0.0380 (11)0.0270 (11)0.0005 (9)0.0026 (9)0.0096 (9)
N20.0591 (16)0.0529 (15)0.0328 (13)0.0057 (12)0.0109 (12)0.0028 (11)
N30.0402 (14)0.0682 (18)0.0511 (16)0.0005 (12)0.0134 (12)0.0163 (14)
O10.0521 (12)0.0447 (11)0.0411 (11)0.0074 (9)0.0005 (9)0.0228 (9)
O20.0323 (9)0.0473 (11)0.0312 (10)0.0073 (8)0.0004 (7)0.0048 (8)
O30.0438 (10)0.0409 (10)0.0390 (10)0.0095 (8)0.0003 (8)0.0169 (8)
O40.0307 (9)0.0441 (10)0.0313 (9)0.0039 (7)0.0032 (7)0.0070 (8)
Geometric parameters (Å, º) top
C1—O2i1.252 (3)C7—H70.9300
C1—O41.258 (3)C8—N21.342 (4)
C1—C21.507 (3)C8—N31.358 (4)
C2—H2A0.9600C9—N31.451 (4)
C2—H2B0.9600C9—H9A0.9600
C2—H2C0.9600C9—H9B0.9600
C3—O31.255 (3)C9—H9C0.9600
C3—O1i1.259 (3)C10—N31.447 (5)
C3—C41.506 (4)C10—H10A0.9600
C4—H4A0.9600C10—H10B0.9600
C4—H4B0.9600C10—H10C0.9600
C4—H4C0.9600Cu1—O31.9649 (18)
C5—N11.331 (4)Cu1—O11.9654 (19)
C5—C61.363 (4)Cu1—O21.9738 (18)
C5—H50.9300Cu1—O41.9756 (18)
C6—N21.331 (4)Cu1—N12.197 (2)
C6—H60.9300Cu1—Cu1i2.6326 (6)
C7—N11.321 (3)O1—C3i1.259 (3)
C7—C81.411 (4)O2—C1i1.252 (3)
O2i—C1—O4125.7 (2)H9A—C9—H9C109.5
O2i—C1—C2116.0 (2)H9B—C9—H9C109.5
O4—C1—C2118.3 (2)N3—C10—H10A109.5
C1—C2—H2A109.5N3—C10—H10B109.5
C1—C2—H2B109.5H10A—C10—H10B109.5
H2A—C2—H2B109.5N3—C10—H10C109.5
C1—C2—H2C109.5H10A—C10—H10C109.5
H2A—C2—H2C109.5H10B—C10—H10C109.5
H2B—C2—H2C109.5O3—Cu1—O1168.16 (8)
O3—C3—O1i125.6 (2)O3—Cu1—O289.93 (9)
O3—C3—C4117.4 (3)O1—Cu1—O290.44 (9)
O1i—C3—C4117.0 (2)O3—Cu1—O488.93 (8)
C3—C4—H4A109.5O1—Cu1—O488.32 (9)
C3—C4—H4B109.5O2—Cu1—O4168.35 (7)
H4A—C4—H4B109.5O3—Cu1—N194.74 (8)
C3—C4—H4C109.5O1—Cu1—N197.07 (8)
H4A—C4—H4C109.5O2—Cu1—N192.23 (8)
H4B—C4—H4C109.5O4—Cu1—N199.42 (8)
N1—C5—C6120.7 (3)O3—Cu1—Cu1i83.66 (6)
N1—C5—H5119.7O1—Cu1—Cu1i84.71 (6)
C6—C5—H5119.7O2—Cu1—Cu1i81.05 (6)
N2—C6—C5123.5 (3)O4—Cu1—Cu1i87.31 (5)
N2—C6—H6118.3N1—Cu1—Cu1i173.08 (6)
C5—C6—H6118.3C7—N1—C5117.8 (2)
N1—C7—C8121.3 (3)C7—N1—Cu1121.20 (18)
N1—C7—H7119.3C5—N1—Cu1120.88 (18)
C8—C7—H7119.3C6—N2—C8116.2 (2)
N2—C8—N3117.6 (3)C8—N3—C10121.5 (3)
N2—C8—C7120.4 (3)C8—N3—C9120.0 (3)
N3—C8—C7122.0 (3)C10—N3—C9118.4 (3)
N3—C9—H9A109.5C3i—O1—Cu1122.29 (17)
N3—C9—H9B109.5C1i—O2—Cu1126.74 (17)
H9A—C9—H9B109.5C3—O3—Cu1123.65 (17)
N3—C9—H9C109.5C1—O4—Cu1119.15 (16)
N1—C5—C6—N21.7 (6)O3—Cu1—O1—C3i13.5 (5)
N1—C7—C8—N20.9 (4)O2—Cu1—O1—C3i78.2 (2)
N1—C7—C8—N3178.1 (3)O4—Cu1—O1—C3i90.2 (2)
C8—C7—N1—C50.3 (4)N1—Cu1—O1—C3i170.5 (2)
C8—C7—N1—Cu1176.6 (2)Cu1i—Cu1—O1—C3i2.7 (2)
C6—C5—N1—C71.5 (5)O3—Cu1—O2—C1i81.6 (2)
C6—C5—N1—Cu1175.3 (3)O1—Cu1—O2—C1i86.6 (2)
O3—Cu1—N1—C785.5 (2)O4—Cu1—O2—C1i2.8 (5)
O1—Cu1—N1—C795.3 (2)N1—Cu1—O2—C1i176.3 (2)
O2—Cu1—N1—C74.6 (2)Cu1i—Cu1—O2—C1i2.0 (2)
O4—Cu1—N1—C7175.2 (2)O1i—C3—O3—Cu11.4 (4)
Cu1i—Cu1—N1—C79.2 (6)C4—C3—O3—Cu1178.70 (18)
O3—Cu1—N1—C591.3 (2)O1—Cu1—O3—C313.4 (5)
O1—Cu1—N1—C587.9 (2)O2—Cu1—O3—C378.4 (2)
O2—Cu1—N1—C5178.6 (2)O4—Cu1—O3—C390.0 (2)
O4—Cu1—N1—C51.6 (2)N1—Cu1—O3—C3170.7 (2)
Cu1i—Cu1—N1—C5167.6 (4)Cu1i—Cu1—O3—C32.6 (2)
C5—C6—N2—C80.4 (5)O2i—C1—O4—Cu13.5 (4)
N3—C8—N2—C6178.2 (3)C2—C1—O4—Cu1176.12 (18)
C7—C8—N2—C60.8 (5)O3—Cu1—O4—C185.17 (19)
N2—C8—N3—C10178.6 (3)O1—Cu1—O4—C183.31 (19)
C7—C8—N3—C102.4 (5)O2—Cu1—O4—C10.7 (5)
N2—C8—N3—C92.7 (5)N1—Cu1—O4—C1179.80 (18)
C7—C8—N3—C9178.2 (3)Cu1i—Cu1—O4—C11.47 (18)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C6H9N3)2]
Mr609.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1052 (13), 8.1775 (13), 10.6534 (17)
α, β, γ (°)67.826 (2), 80.013 (2), 87.328 (2)
V3)643.84 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.68 × 0.41 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.390, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
3494, 2465, 2317
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.09
No. of reflections2465
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.44

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O31.9649 (18)Cu1—O41.9756 (18)
Cu1—O11.9654 (19)Cu1—N12.197 (2)
Cu1—O21.9738 (18)
O3—Cu1—O1168.16 (8)O2—Cu1—O4168.35 (7)
O3—Cu1—O289.93 (9)O3—Cu1—N194.74 (8)
O1—Cu1—O290.44 (9)O1—Cu1—N197.07 (8)
O3—Cu1—O488.93 (8)O2—Cu1—N192.23 (8)
O1—Cu1—O488.32 (9)O4—Cu1—N199.42 (8)
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869–875.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-G., Liu, Q.-S. & Shi, J.-M. (2007). Acta Cryst. E63, m2082.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds