metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(propane­dioato-κ2O1,O3)[2-(1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]nickel(II) trihydrate

aDepartment of Chemistry, Xinzhou Teacher's University, Shanxi Xinzhou 034000, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 25 April 2009; accepted 7 May 2009; online 14 May 2009)

In the title mononuclear complex, [Ni(C3H2O4)(C15H10N4)(H2O)]·3H2O, the metal center is coordinated in a distorted NiN3O3 geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the components into a two-dimensional network. In addition, there are weak ππ stacking inter­actions between symmetry-related phenanthroline rings, with a centroid–centroid distance of 3.6253 (17) Å.

Related literature

For a related NiII structure with 1,10-phenanthroline, see: Zhang et al. (2008[Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H2O4)(C15H10N4)(H2O)]·3H2O

  • Mr = 479.09

  • Triclinic, [P \overline 1]

  • a = 7.8066 (14) Å

  • b = 11.639 (2) Å

  • c = 12.159 (2) Å

  • α = 109.234 (2)°

  • β = 103.493 (2)°

  • γ = 90.601 (2)°

  • V = 1009.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 K

  • 0.31 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.744, Tmax = 0.863

  • 5558 measured reflections

  • 3887 independent reflections

  • 3414 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.06

  • 3887 reflections

  • 280 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Ni1 2.186 (2)
N3—Ni1 2.007 (2)
N4—Ni1 2.145 (2)
Ni1—O3 2.0149 (18)
Ni1—O1 2.0427 (17)
Ni1—O5 2.0603 (18)
N3—Ni1—O3 172.30 (8)
N3—Ni1—O1 89.69 (7)
O3—Ni1—O1 89.36 (7)
N3—Ni1—O5 94.60 (8)
O3—Ni1—O5 86.90 (8)
O1—Ni1—O5 174.18 (7)
N3—Ni1—N4 78.21 (8)
O3—Ni1—N4 94.31 (8)
O1—Ni1—N4 96.83 (7)
O5—Ni1—N4 87.90 (8)
N3—Ni1—N1 75.03 (8)
O3—Ni1—N1 112.52 (8)
O1—Ni1—N1 85.91 (8)
O5—Ni1—N1 91.40 (8)
N4—Ni1—N1 153.09 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H2⋯O2i 0.87 1.77 2.622 (3) 170
O7—H15⋯O8ii 0.82 2.04 2.791 (4) 152
O5—H1⋯O6iii 0.82 1.97 2.773 (3) 167
O6—H12⋯O3iv 0.89 2.00 2.785 (3) 147
O8—H3⋯O4 0.90 2.13 2.895 (4) 143
O7—H8⋯O4 0.90 1.99 2.836 (4) 155
O6—H11⋯O8 0.76 1.99 2.736 (4) 165
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes containing derivatives of 1,10-phenanthroline as ligands play a pivotal role in the area of modern coordination chemistry. The interest in this area has caused us to synthesize the title complex, and here we report its crystal structure, (I), Fig. 1.

The coordination bond lengths and associated angles (Table 1) indicate that the NiII ion assumes a distorted octahedral geometry. All non-hydrogen atoms of the ligand 2-(1H-pyrazol-1-yl)-1,10-phenanthroline define a plane within 0.0368 Å with a maximum deviation of -0.0854 (19) Å for atom N4. In the crystal structure, intermolecular O—H···O hydrogen bonds link the components of the structure into a two-dimensional network (see Fig. 2 and Table 2). In addition, there are weak ππ stacking interactions with Cg1···Cg2i = 3.6253 (17) Å and Cg1···Cg2iperp = 3.411 Å; α is 1.41° [symmetry code: (i) -x, -y, -z; Cg1 and Cg2 are the centroids of C1/C15–C18/N4 ring and C1/C11–C15 ring, respectively; Cg1···Cg2perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between the Cg1 ring plane and the Cg2 ring plane].

Related literature top

For a related NiII structure with 1,10-phenanthroline, see: Zhang et al. (2008).

Experimental top

A 5 ml H2O solution of hydrated nickel perchlorate (0.1606 g, 0.439 mmol) was added to an ethanol solution containing 2-(1H-pyrazol-1-yl)1,10-phenanthroline (0.1025 g, 0.416 mmol) and the solution was stirred for a few minutes. A 5 ml H2O solution of sodium propanedioate (0.0714 g, 0.482 mmol) was then added dropwise into the above solution. The solution was stirred for another a few minutes. Blue single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms of water molecules were located in a difference Fourier map and refined as riding in their as-found positions, with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions, and refined as riding, with C—H = 0.97 Å for methylene and C—H = 0.93 Å for other H atoms, Uiso(H) = 1.2eq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines.
Aqua(propanedioato-κ2O1,O3[2-(1H-pyrazol-1-yl- κN2)-1,10-phenanthroline-κ2N,N'])nickel(II) trihydrate top
Crystal data top
[Ni(C3H2O4)(C15H10N4)(H2O)]·3H2OZ = 2
Mr = 479.09F(000) = 496
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8066 (14) ÅCell parameters from 2439 reflections
b = 11.639 (2) Åθ = 2.7–26.4°
c = 12.159 (2) ŵ = 1.02 mm1
α = 109.234 (2)°T = 298 K
β = 103.493 (2)°Block, blue
γ = 90.601 (2)°0.31 × 0.21 × 0.15 mm
V = 1009.8 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3887 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.744, Tmax = 0.863k = 1014
5558 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1787P]
where P = (Fo2 + 2Fc2)/3
3887 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C3H2O4)(C15H10N4)(H2O)]·3H2Oγ = 90.601 (2)°
Mr = 479.09V = 1009.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8066 (14) ÅMo Kα radiation
b = 11.639 (2) ŵ = 1.02 mm1
c = 12.159 (2) ÅT = 298 K
α = 109.234 (2)°0.31 × 0.21 × 0.15 mm
β = 103.493 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3414 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.863Rint = 0.018
5558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
3887 reflectionsΔρmin = 0.36 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2105 (3)0.0069 (3)0.0485 (2)0.0402 (6)
C20.5533 (3)0.2194 (2)0.3192 (2)0.0317 (5)
C30.5634 (4)0.3565 (2)0.3449 (3)0.0481 (7)
H3A0.60040.39750.43130.058*
H3B0.65420.37830.31080.058*
C40.3933 (3)0.4043 (2)0.2967 (3)0.0391 (6)
C50.4542 (4)0.2600 (3)0.6200 (2)0.0501 (7)
H50.50370.34030.64560.060*
C60.4961 (4)0.1811 (3)0.6853 (3)0.0585 (8)
H60.57710.19830.75940.070*
C70.3961 (4)0.0755 (3)0.6196 (3)0.0485 (7)
H70.39340.00530.63990.058*
C80.1738 (3)0.0109 (2)0.4191 (2)0.0349 (5)
C90.1191 (4)0.1082 (3)0.4083 (3)0.0464 (7)
H90.16650.14050.46810.056*
C100.0063 (4)0.1753 (3)0.3072 (3)0.0500 (7)
H100.04370.25490.29770.060*
C110.0800 (4)0.1258 (2)0.2169 (3)0.0423 (6)
C120.0145 (3)0.0073 (2)0.2364 (2)0.0334 (5)
C130.2146 (4)0.1856 (3)0.1088 (3)0.0513 (8)
H130.26030.26500.09320.062*
C140.2756 (4)0.1290 (3)0.0300 (3)0.0501 (7)
H140.36330.17040.03910.060*
C150.0762 (3)0.0535 (2)0.1524 (2)0.0321 (5)
C160.2689 (4)0.0593 (3)0.0293 (2)0.0490 (7)
H160.35800.02420.09940.059*
C170.1951 (4)0.1745 (3)0.0018 (2)0.0506 (7)
H170.23450.21900.05230.061*
C180.0589 (4)0.2261 (3)0.1032 (2)0.0411 (6)
H180.00850.30470.12020.049*
N10.3355 (3)0.2062 (2)0.51739 (19)0.0395 (5)
N20.2992 (3)0.0911 (2)0.51724 (19)0.0366 (5)
N30.1093 (3)0.05894 (19)0.33639 (18)0.0317 (4)
N40.0004 (3)0.16792 (19)0.17875 (18)0.0325 (5)
Ni10.19360 (4)0.22721 (3)0.34854 (3)0.02967 (12)
O10.4043 (2)0.15843 (15)0.28425 (15)0.0354 (4)
O20.6966 (2)0.17407 (18)0.3347 (2)0.0496 (5)
O30.2619 (2)0.38952 (16)0.33705 (18)0.0437 (5)
O40.3907 (3)0.4573 (2)0.2239 (2)0.0593 (6)
O50.0012 (2)0.31123 (18)0.42578 (17)0.0474 (5)
H20.09740.26330.38750.071*
H10.00360.34630.49700.071*
O60.9811 (4)0.5352 (2)0.3413 (2)0.0834 (8)
H121.08380.50980.32690.125*
H110.91070.51810.28210.125*
O70.1756 (4)0.5519 (3)0.0576 (3)0.0948 (9)
H80.21840.50350.10040.142*
H150.24430.53500.01450.142*
O80.6999 (4)0.5114 (3)0.1500 (3)0.0967 (10)
H40.68940.43110.10630.145*
H30.58690.51760.15410.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (14)0.0451 (15)0.0345 (13)0.0010 (11)0.0083 (11)0.0025 (12)
C20.0300 (13)0.0359 (13)0.0310 (12)0.0031 (10)0.0078 (10)0.0139 (10)
C30.0311 (14)0.0379 (15)0.075 (2)0.0006 (11)0.0046 (13)0.0257 (15)
C40.0322 (14)0.0281 (13)0.0527 (16)0.0026 (10)0.0022 (12)0.0142 (12)
C50.0474 (17)0.0535 (18)0.0400 (15)0.0024 (14)0.0011 (13)0.0122 (14)
C60.0524 (19)0.078 (2)0.0394 (16)0.0021 (17)0.0043 (14)0.0244 (16)
C70.0488 (17)0.0619 (19)0.0444 (15)0.0125 (15)0.0096 (13)0.0319 (15)
C80.0347 (14)0.0368 (13)0.0377 (13)0.0047 (11)0.0115 (11)0.0169 (11)
C90.0527 (18)0.0428 (16)0.0541 (17)0.0055 (13)0.0154 (14)0.0289 (14)
C100.0561 (19)0.0337 (15)0.0650 (19)0.0046 (13)0.0204 (15)0.0197 (14)
C110.0445 (16)0.0366 (14)0.0471 (15)0.0010 (12)0.0181 (13)0.0116 (12)
C120.0281 (13)0.0340 (13)0.0376 (13)0.0006 (10)0.0106 (10)0.0100 (11)
C130.0506 (18)0.0386 (15)0.0545 (18)0.0165 (13)0.0142 (14)0.0026 (14)
C140.0416 (17)0.0502 (17)0.0418 (15)0.0104 (13)0.0044 (13)0.0015 (13)
C150.0296 (13)0.0354 (13)0.0305 (12)0.0027 (10)0.0102 (10)0.0083 (10)
C160.0425 (16)0.0588 (19)0.0332 (14)0.0082 (14)0.0000 (12)0.0057 (13)
C170.0570 (19)0.0522 (18)0.0369 (15)0.0138 (15)0.0006 (13)0.0154 (13)
C180.0436 (15)0.0408 (15)0.0385 (14)0.0085 (12)0.0076 (12)0.0148 (12)
N10.0396 (13)0.0398 (12)0.0373 (12)0.0003 (10)0.0046 (10)0.0145 (10)
N20.0352 (12)0.0426 (12)0.0371 (11)0.0056 (10)0.0079 (9)0.0208 (10)
N30.0294 (11)0.0324 (11)0.0347 (11)0.0007 (8)0.0081 (8)0.0133 (9)
N40.0302 (11)0.0343 (11)0.0326 (11)0.0033 (9)0.0070 (8)0.0114 (9)
Ni10.02559 (19)0.02943 (19)0.03366 (19)0.00035 (12)0.00542 (13)0.01179 (14)
O10.0286 (9)0.0319 (9)0.0421 (10)0.0002 (7)0.0076 (7)0.0090 (8)
O20.0311 (10)0.0451 (11)0.0792 (14)0.0093 (8)0.0159 (10)0.0282 (10)
O30.0369 (11)0.0334 (10)0.0658 (13)0.0051 (8)0.0160 (9)0.0210 (9)
O40.0512 (13)0.0661 (14)0.0783 (15)0.0069 (11)0.0143 (11)0.0488 (13)
O50.0315 (10)0.0577 (12)0.0436 (10)0.0017 (9)0.0104 (8)0.0043 (9)
O60.0684 (17)0.0799 (19)0.0820 (17)0.0267 (14)0.0127 (14)0.0053 (15)
O70.090 (2)0.123 (3)0.097 (2)0.0304 (19)0.0232 (17)0.070 (2)
O80.074 (2)0.128 (3)0.105 (2)0.0108 (18)0.0367 (17)0.051 (2)
Geometric parameters (Å, º) top
C1—C151.404 (4)C12—N31.351 (3)
C1—C161.408 (4)C12—C151.425 (4)
C1—C141.432 (4)C13—C141.336 (5)
C2—O21.243 (3)C13—H130.9300
C2—O11.261 (3)C14—H140.9300
C2—C31.519 (4)C15—N41.358 (3)
C3—C41.511 (4)C16—C171.356 (4)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.403 (4)
C4—O41.231 (3)C17—H170.9300
C4—O31.269 (3)C18—N41.317 (3)
C5—N11.320 (4)C18—H180.9300
C5—C61.395 (4)N1—N21.367 (3)
C5—H50.9300N1—Ni12.186 (2)
C6—C71.341 (5)N3—Ni12.007 (2)
C6—H60.9300N4—Ni12.145 (2)
C7—N21.366 (3)Ni1—O32.0149 (18)
C7—H70.9300Ni1—O12.0427 (17)
C8—N31.311 (3)Ni1—O52.0603 (18)
C8—N21.398 (3)O5—H20.8653
C8—C91.401 (4)O5—H10.8184
C9—C101.367 (4)O6—H120.8934
C9—H90.9300O6—H110.7604
C10—C111.414 (4)O7—H80.9033
C10—H100.9300O7—H150.8159
C11—C121.390 (4)O8—H40.9009
C11—C131.433 (4)O8—H30.8976
C15—C1—C16116.2 (3)N4—C15—C12117.1 (2)
C15—C1—C14118.1 (3)C1—C15—C12119.0 (2)
C16—C1—C14125.7 (3)C17—C16—C1119.9 (3)
O2—C2—O1123.8 (2)C17—C16—H16120.1
O2—C2—C3116.5 (2)C1—C16—H16120.1
O1—C2—C3119.7 (2)C16—C17—C18119.6 (3)
C4—C3—C2115.2 (2)C16—C17—H17120.2
C4—C3—H3A108.5C18—C17—H17120.2
C2—C3—H3A108.5N4—C18—C17122.8 (3)
C4—C3—H3B108.5N4—C18—H18118.6
C2—C3—H3B108.5C17—C18—H18118.6
H3A—C3—H3B107.5C5—N1—N2104.6 (2)
O4—C4—O3124.0 (3)C5—N1—Ni1144.3 (2)
O4—C4—C3119.0 (3)N2—N1—Ni1110.94 (15)
O3—C4—C3117.0 (2)C7—N2—N1111.0 (2)
N1—C5—C6111.4 (3)C7—N2—C8130.7 (2)
N1—C5—H5124.3N1—N2—C8118.3 (2)
C6—C5—H5124.3C8—N3—C12119.8 (2)
C7—C6—C5106.2 (3)C8—N3—Ni1122.53 (18)
C7—C6—H6126.9C12—N3—Ni1117.64 (16)
C5—C6—H6126.9C18—N4—C15117.5 (2)
C6—C7—N2106.8 (3)C18—N4—Ni1130.64 (19)
C6—C7—H7126.6C15—N4—Ni1111.70 (16)
N2—C7—H7126.6N3—Ni1—O3172.30 (8)
N3—C8—N2112.9 (2)N3—Ni1—O189.69 (7)
N3—C8—C9122.4 (2)O3—Ni1—O189.36 (7)
N2—C8—C9124.7 (2)N3—Ni1—O594.60 (8)
C10—C9—C8118.0 (3)O3—Ni1—O586.90 (8)
C10—C9—H9121.0O1—Ni1—O5174.18 (7)
C8—C9—H9121.0N3—Ni1—N478.21 (8)
C9—C10—C11121.1 (3)O3—Ni1—N494.31 (8)
C9—C10—H10119.5O1—Ni1—N496.83 (7)
C11—C10—H10119.5O5—Ni1—N487.90 (8)
C12—C11—C10116.0 (3)N3—Ni1—N175.03 (8)
C12—C11—C13117.6 (3)O3—Ni1—N1112.52 (8)
C10—C11—C13126.4 (3)O1—Ni1—N185.91 (8)
N3—C12—C11122.7 (2)O5—Ni1—N191.40 (8)
N3—C12—C15115.3 (2)N4—Ni1—N1153.09 (8)
C11—C12—C15122.0 (2)C2—O1—Ni1121.73 (15)
C14—C13—C11121.1 (3)C4—O3—Ni1121.25 (16)
C14—C13—H13119.4Ni1—O5—H2105.6
C11—C13—H13119.4Ni1—O5—H1128.8
C13—C14—C1122.2 (3)H2—O5—H1113.1
C13—C14—H14118.9H12—O6—H11109.3
C1—C14—H14118.9H8—O7—H1595.2
N4—C15—C1124.0 (2)H4—O8—H397.9
O2—C2—C3—C4165.4 (2)C15—C12—N3—C8179.8 (2)
O1—C2—C3—C414.8 (4)C11—C12—N3—Ni1178.57 (19)
C2—C3—C4—O4120.0 (3)C15—C12—N3—Ni12.4 (3)
C2—C3—C4—O361.9 (3)C17—C18—N4—C150.4 (4)
N1—C5—C6—C70.8 (4)C17—C18—N4—Ni1176.1 (2)
C5—C6—C7—N20.8 (4)C1—C15—N4—C181.7 (3)
N3—C8—C9—C100.0 (4)C12—C15—N4—C18178.3 (2)
N2—C8—C9—C10179.4 (3)C1—C15—N4—Ni1178.24 (19)
C8—C9—C10—C110.7 (4)C12—C15—N4—Ni11.8 (3)
C9—C10—C11—C121.4 (4)C8—N3—Ni1—O181.8 (2)
C9—C10—C11—C13178.4 (3)C12—N3—Ni1—O195.92 (18)
C10—C11—C12—N31.4 (4)C8—N3—Ni1—O594.3 (2)
C13—C11—C12—N3178.3 (2)C12—N3—Ni1—O588.01 (18)
C10—C11—C12—C15179.6 (2)C8—N3—Ni1—N4178.8 (2)
C13—C11—C12—C150.6 (4)C12—N3—Ni1—N41.12 (17)
C12—C11—C13—C140.4 (4)C8—N3—Ni1—N14.07 (19)
C10—C11—C13—C14179.4 (3)C12—N3—Ni1—N1178.23 (19)
C11—C13—C14—C10.2 (5)C18—N4—Ni1—N3176.3 (2)
C15—C1—C14—C131.0 (4)C15—N4—Ni1—N30.39 (15)
C16—C1—C14—C13179.3 (3)C18—N4—Ni1—O35.6 (2)
C16—C1—C15—N41.7 (4)C15—N4—Ni1—O3178.52 (15)
C14—C1—C15—N4178.1 (2)C18—N4—Ni1—O195.4 (2)
C16—C1—C15—C12178.3 (2)C15—N4—Ni1—O188.65 (16)
C14—C1—C15—C121.9 (4)C18—N4—Ni1—O581.2 (2)
N3—C12—C15—N42.8 (3)C15—N4—Ni1—O594.75 (16)
C11—C12—C15—N4178.2 (2)C18—N4—Ni1—N1170.1 (2)
N3—C12—C15—C1177.2 (2)C15—N4—Ni1—N15.8 (3)
C11—C12—C15—C11.8 (4)C5—N1—Ni1—N3178.2 (4)
C15—C1—C16—C170.3 (4)N2—N1—Ni1—N34.34 (15)
C14—C1—C16—C17179.5 (3)C5—N1—Ni1—O30.2 (4)
C1—C16—C17—C181.0 (4)N2—N1—Ni1—O3174.04 (14)
C16—C17—C18—N41.0 (5)C5—N1—Ni1—O187.4 (3)
C6—C5—N1—N20.5 (3)N2—N1—Ni1—O186.44 (16)
C6—C5—N1—Ni1173.6 (2)C5—N1—Ni1—O587.4 (3)
C6—C7—N2—N10.5 (3)N2—N1—Ni1—O598.73 (16)
C6—C7—N2—C8179.5 (3)C5—N1—Ni1—N4175.5 (3)
C5—N1—N2—C70.1 (3)N2—N1—Ni1—N410.6 (3)
Ni1—N1—N2—C7176.26 (17)O2—C2—O1—Ni1143.1 (2)
C5—N1—N2—C8179.1 (2)C3—C2—O1—Ni136.7 (3)
Ni1—N1—N2—C84.6 (3)N3—Ni1—O1—C2145.91 (18)
N3—C8—N2—C7179.5 (2)O3—Ni1—O1—C241.73 (19)
C9—C8—N2—C71.1 (4)N4—Ni1—O1—C2136.00 (18)
N3—C8—N2—N11.6 (3)N1—Ni1—O1—C270.90 (18)
C9—C8—N2—N1177.9 (2)O4—C4—O3—Ni1135.1 (2)
N2—C8—N3—C12179.5 (2)C3—C4—O3—Ni146.9 (3)
C9—C8—N3—C120.0 (4)O1—Ni1—O3—C41.6 (2)
N2—C8—N3—Ni12.8 (3)O5—Ni1—O3—C4177.2 (2)
C9—C8—N3—Ni1177.69 (19)N4—Ni1—O3—C495.2 (2)
C11—C12—N3—C80.8 (4)N1—Ni1—O3—C486.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O2i0.871.772.622 (3)170
O7—H15···O8ii0.822.042.791 (4)152
O5—H1···O6iii0.821.972.773 (3)167
O6—H12···O3iv0.892.002.785 (3)147
O8—H3···O40.902.132.895 (4)143
O7—H8···O40.901.992.836 (4)155
O6—H11···O80.761.992.736 (4)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H2O4)(C15H10N4)(H2O)]·3H2O
Mr479.09
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8066 (14), 11.639 (2), 12.159 (2)
α, β, γ (°)109.234 (2), 103.493 (2), 90.601 (2)
V3)1009.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.31 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.744, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
5558, 3887, 3414
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.06
No. of reflections3887
No. of parameters280
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Ni12.186 (2)Ni1—O32.0149 (18)
N3—Ni12.007 (2)Ni1—O12.0427 (17)
N4—Ni12.145 (2)Ni1—O52.0603 (18)
N3—Ni1—O3172.30 (8)O1—Ni1—N496.83 (7)
N3—Ni1—O189.69 (7)O5—Ni1—N487.90 (8)
O3—Ni1—O189.36 (7)N3—Ni1—N175.03 (8)
N3—Ni1—O594.60 (8)O3—Ni1—N1112.52 (8)
O3—Ni1—O586.90 (8)O1—Ni1—N185.91 (8)
O1—Ni1—O5174.18 (7)O5—Ni1—N191.40 (8)
N3—Ni1—N478.21 (8)N4—Ni1—N1153.09 (8)
O3—Ni1—N494.31 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O2i0.871.772.622 (3)170
O7—H15···O8ii0.822.042.791 (4)152
O5—H1···O6iii0.821.972.773 (3)167
O6—H12···O3iv0.892.002.785 (3)147
O8—H3···O40.902.132.895 (4)143
O7—H8···O40.901.992.836 (4)155
O6—H11···O80.761.992.736 (4)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds