metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­(1H-imidazo[4,5-f][1,10]phenanthroline)cobalt(II)]-μ-sulfato]

aDepartment of Chemistry, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China
*Correspondence e-mail: jianyu01@126.com

(Received 28 April 2009; accepted 1 May 2009; online 7 May 2009)

The CoII ion in the title complex, [Co(SO4)(C13H8N4)(H2O)2]n, has a slightly distorted octa­hedral coordination environment formed by two O atoms from two symmetry-related bridging sulfate ligands, two N atoms from a bis-chelating 1H-imidazo[4,5-f][1,10]phenanthroline (IPL) ligand and two O atoms from coordinated water mol­ecules. The bridging sulfate ligands connect CoII ions to form a one-dimensional chain along the b-axis direction. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the chains into a three-dimensional network.

Related literature

For general background on coordination polymers, see: Ghosh et al. (2004[Ghosh, A. K., Ghoshal, D., Lu, T. H., Mostafa, G. & Chaudhuri, N. R. (2004). Cryst. Growth Des. 4, 581-857.]). For related IPL coordination complexes, see: Xiong et al. (1999[Xiong, Y., He, X.-F., Zou, X.-H., Wu, J.-Z., Chen, X.-M., Ji, L.-N., Li, R.-H., Zhou, J.-Y. & Yu, K.-B. (1999). J. Chem. Soc. Dalton Trans. pp. 19-24.]). For related structures of coordination polymers, see: Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(SO4)(C13H8N4)(H2O)2]

  • Mr = 411.26

  • Monoclinic, P 21 /c

  • a = 10.916 (4) Å

  • b = 7.017 (2) Å

  • c = 19.690 (7) Å

  • β = 99.353 (7)°

  • V = 1488.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 298 K

  • 0.27 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.714, Tmax = 0.878

  • 7263 measured reflections

  • 2639 independent reflections

  • 1216 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.100

  • S = 1.24

  • 2639 reflections

  • 242 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O5 0.83 (5) 1.91 (3) 2.698 (7) 159 (7)
O1—H1C⋯O5i 0.82 (5) 2.00 (4) 2.749 (6) 150 (7)
O2—H2B⋯O6ii 0.82 (5) 2.18 (3) 2.957 (7) 158 (6)
O1—H1B⋯N4iii 0.84 (5) 1.91 (5) 2.731 (7) 168 (7)
N3—H3A⋯O4iv 0.86 1.95 2.795 (6) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+2, -z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A wide range of extended one-dimensional, two-dimensional or three-dimenional frameworks with different interesting structural features, resulting from coordination bonding, hydrogen bonding, aromatic π···π stacking interactions play an important role in electron-transfer processes in some biological systems (Ghosh et al., 2004). 1H-imidazo[4,5-f][1,10]-phenanthroline (IPL) is a rich conjugated molecular building block and has been employed to construct frameworks (Xiong et al., 1999). Herein, we describe the preparation and crystal structure of the title complex (I).

The CoII ion in the title complex, has a slightly distorted octahedral coordination formed by two O atoms from symmetry related bridging sulfate ligands, two N atoms from a bis-chelate IPL ligand and two O atoms from coordinated water molecules (Figure 1). The Co—N and Co—O bond lengths are not significantly different from the values observed in related complexes (Liu et al., 2008). The bridging sulfate ligands connect CoII ions into a 1-D zigzag chain parallel to [0 1 0]. In the crystal structure, intermolecular O-H···O, O-H···N and N-H···O hydrogen bonds link one dimensional chains into a three dimensional network (Fig. 2). In addition, significant π···π stacking interactions with centroid to centroid distances in the range 3.465 (4)-3.548 (4)Å help stabilize the crystal structure.

Related literature top

For general background on coordination polymers, see Ghosh et al. (2004). For related IPL coordination complexes, see Xiong et al. (1999). For related structures of coordination polymers, see: Liu et al. (2008).

Experimental top

The title compound was prepared by hydrothermal conditions. IPL (22mg, 0.1 mmol) in an aqueous solution (10 mL) was mixed with an aqueous solution (5mL) of Co(SO4)2 (31mg, 0.12mmol). After stirring for 30 min in air, the mixture was placed into 25 mL Teflon-lined autoclave and heated at 383K for 96h. The autoclave was cooled at a rate 5° h-1. The title complex as pink crystal was collected by filtration, washed with water, and dried in air.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å; N-H = 0.86 Å with Uiso(H) = 1.2Ueq. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.82 (1) Å).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-labeling scheme [Symmetry codes: (i) -x+1,y+1/2,-z+1/2]. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
catena-Poly[[diaqua(1H-imidazo[4,5-f][1,10] phenanthroline)cobalt(II)]-µ-sulfato] top
Crystal data top
[Co(SO4)(C13H8N4)(H2O)2]F(000) = 836
Mr = 411.26Dx = 1.835 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2639 reflections
a = 10.916 (4) Åθ = 2.1–25.1°
b = 7.017 (2) ŵ = 1.34 mm1
c = 19.690 (7) ÅT = 298 K
β = 99.353 (7)°Block, pink
V = 1488.2 (9) Å30.27 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2639 independent reflections
Radiation source: fine-focus sealed tube1216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1311
Tmin = 0.714, Tmax = 0.878k = 78
7263 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + 0.5747P]
where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.53 e Å3
16 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Co(SO4)(C13H8N4)(H2O)2]V = 1488.2 (9) Å3
Mr = 411.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.916 (4) ŵ = 1.34 mm1
b = 7.017 (2) ÅT = 298 K
c = 19.690 (7) Å0.27 × 0.15 × 0.10 mm
β = 99.353 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
2639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1216 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.878Rint = 0.108
7263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06316 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.53 e Å3
2639 reflectionsΔρmin = 0.80 e Å3
242 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.34886 (10)0.82399 (16)0.17466 (5)0.0429 (4)
S10.56896 (17)0.4999 (3)0.16741 (9)0.0274 (5)
N10.1702 (5)0.6658 (8)0.1762 (3)0.0245 (14)
N20.2484 (5)0.8137 (8)0.0647 (2)0.0250 (14)
N30.2426 (5)0.6042 (7)0.0324 (3)0.0267 (16)
H3A0.29180.55660.05790.032*
N40.1771 (5)0.7193 (8)0.0599 (2)0.0291 (16)
O10.2408 (5)1.0847 (8)0.1803 (2)0.0445 (15)
O20.5124 (5)0.9751 (8)0.1509 (3)0.0412 (14)
O30.4411 (4)0.5535 (6)0.1725 (2)0.0350 (14)
O40.5748 (4)0.4383 (7)0.09768 (19)0.0386 (14)
O50.6524 (4)0.6627 (7)0.18635 (19)0.0323 (12)
O60.6059 (4)0.3399 (6)0.21441 (19)0.0307 (12)
C10.1378 (7)0.5856 (9)0.2311 (3)0.031 (2)
H1A0.19660.57490.27080.037*
C20.0173 (7)0.5157 (10)0.2320 (3)0.0332 (19)
H2A0.00170.45810.27150.040*
C30.0704 (7)0.5316 (10)0.1759 (3)0.034 (2)
H30.15030.48640.17640.041*
C40.0385 (6)0.6200 (9)0.1152 (3)0.0238 (18)
C50.1175 (6)0.6462 (10)0.0526 (3)0.0265 (18)
C60.2719 (6)0.6509 (10)0.0334 (3)0.0278 (18)
H60.35120.63710.05850.033*
C70.0817 (6)0.7170 (10)0.0066 (3)0.0254 (18)
C80.0452 (6)0.7759 (9)0.0039 (3)0.0216 (18)
C90.0918 (7)0.8457 (9)0.0621 (3)0.0286 (18)
H90.04030.85920.10430.034*
C100.2155 (7)0.8930 (10)0.0542 (3)0.036 (2)
H100.24910.93750.09170.043*
C110.2904 (7)0.8744 (9)0.0098 (3)0.032 (2)
H110.37400.90630.01380.039*
C120.1267 (6)0.7589 (9)0.0569 (3)0.0226 (18)
C130.0858 (6)0.6824 (10)0.1185 (3)0.0237 (17)
H1B0.213 (6)1.151 (9)0.146 (2)0.052 (12)*
H2B0.549 (6)1.076 (5)0.159 (3)0.041 (7)*
H1C0.291 (5)1.130 (10)0.212 (2)0.049 (9)*
H2C0.570 (4)0.898 (7)0.160 (3)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0385 (7)0.0469 (8)0.0425 (6)0.0000 (7)0.0044 (5)0.0012 (6)
S10.0247 (11)0.0297 (13)0.0272 (10)0.0014 (11)0.0024 (8)0.0027 (10)
N10.025 (4)0.023 (4)0.025 (3)0.001 (3)0.002 (3)0.001 (3)
N20.028 (4)0.023 (4)0.025 (3)0.002 (3)0.008 (3)0.002 (3)
N30.020 (4)0.037 (4)0.025 (3)0.005 (3)0.007 (3)0.001 (3)
N40.028 (4)0.028 (4)0.029 (3)0.005 (3)0.001 (3)0.004 (3)
O10.052 (4)0.041 (4)0.036 (4)0.018 (3)0.008 (3)0.007 (3)
O20.031 (4)0.027 (4)0.067 (4)0.004 (3)0.013 (3)0.006 (3)
O30.022 (3)0.029 (4)0.053 (3)0.006 (3)0.002 (3)0.000 (2)
O40.040 (3)0.054 (4)0.023 (3)0.009 (3)0.009 (3)0.005 (2)
O50.025 (3)0.031 (3)0.039 (3)0.005 (3)0.002 (2)0.002 (3)
O60.035 (3)0.026 (3)0.027 (2)0.004 (3)0.007 (2)0.004 (2)
C10.042 (5)0.027 (5)0.020 (4)0.001 (4)0.007 (4)0.002 (3)
C20.036 (5)0.035 (5)0.031 (4)0.003 (5)0.010 (4)0.004 (4)
C30.033 (5)0.042 (6)0.029 (4)0.005 (4)0.012 (4)0.003 (4)
C40.025 (4)0.011 (5)0.034 (4)0.003 (4)0.003 (4)0.006 (3)
C50.023 (4)0.025 (5)0.031 (4)0.001 (4)0.003 (4)0.006 (4)
C60.024 (4)0.024 (5)0.034 (4)0.009 (4)0.002 (4)0.002 (4)
C70.022 (4)0.021 (5)0.032 (4)0.001 (4)0.002 (4)0.004 (4)
C80.018 (4)0.016 (5)0.029 (4)0.000 (3)0.001 (3)0.002 (3)
C90.035 (5)0.018 (5)0.032 (4)0.002 (4)0.001 (4)0.001 (4)
C100.051 (6)0.036 (6)0.028 (4)0.002 (4)0.025 (4)0.002 (4)
C110.030 (5)0.033 (5)0.036 (5)0.000 (4)0.012 (4)0.005 (4)
C120.023 (5)0.021 (5)0.024 (4)0.005 (4)0.005 (4)0.000 (3)
C130.029 (4)0.015 (4)0.027 (4)0.003 (4)0.004 (3)0.003 (4)
Geometric parameters (Å, º) top
Co1—O32.152 (4)O2—H2C0.83 (5)
Co1—O6i2.162 (4)O6—Co1ii2.162 (4)
Co1—O22.192 (5)C1—C21.406 (9)
Co1—O12.190 (5)C1—H1A0.9300
Co1—N12.249 (5)C2—C31.343 (8)
Co1—N22.263 (5)C2—H2A0.9300
S1—O41.451 (4)C3—C41.438 (8)
S1—O31.465 (4)C3—H30.9300
S1—O61.469 (4)C4—C51.397 (8)
S1—O51.471 (5)C4—C131.417 (9)
N1—C11.317 (7)C5—C71.382 (8)
N1—C131.347 (7)C6—H60.9300
N2—C111.312 (7)C7—C81.438 (8)
N2—C121.368 (7)C8—C121.375 (8)
N3—C61.325 (7)C8—C91.414 (8)
N3—C51.391 (7)C9—C101.374 (9)
N3—H3A0.8600C9—H90.9300
N4—C61.322 (7)C10—C111.393 (9)
N4—C71.353 (8)C10—H100.9300
O1—H1B0.84 (5)C11—H110.9300
O1—H1C0.82 (5)C12—C131.462 (8)
O2—H2B0.82 (5)
O3—Co1—O6i91.96 (17)N1—C1—C2122.4 (7)
O3—Co1—O291.30 (19)N1—C1—H1A118.8
O6i—Co1—O297.5 (2)C2—C1—H1A118.8
O3—Co1—O1174.6 (2)C3—C2—C1120.3 (7)
O6i—Co1—O186.69 (17)C3—C2—H2A119.8
O2—Co1—O194.1 (2)C1—C2—H2A119.8
O3—Co1—N188.53 (18)C2—C3—C4118.8 (7)
O6i—Co1—N193.88 (18)C2—C3—H3120.6
O2—Co1—N1168.6 (2)C4—C3—H3120.6
O1—Co1—N186.3 (2)C5—C4—C13116.6 (6)
O3—Co1—N296.26 (18)C5—C4—C3126.3 (6)
O6i—Co1—N2164.44 (18)C13—C4—C3117.0 (6)
O2—Co1—N295.5 (2)C7—C5—N3103.5 (6)
O1—Co1—N283.90 (18)C7—C5—C4125.0 (7)
N1—Co1—N273.20 (19)N3—C5—C4131.4 (6)
O4—S1—O3109.3 (3)N4—C6—N3113.4 (6)
O4—S1—O6108.6 (3)N4—C6—H6123.3
O3—S1—O6108.7 (3)N3—C6—H6123.3
O4—S1—O5110.5 (3)N4—C7—C5111.8 (6)
O3—S1—O5109.9 (3)N4—C7—C8129.9 (6)
O6—S1—O5109.8 (3)C5—C7—C8118.3 (7)
C1—N1—C13119.4 (6)C12—C8—C9117.9 (6)
C1—N1—Co1124.9 (5)C12—C8—C7119.4 (6)
C13—N1—Co1114.9 (4)C9—C8—C7122.7 (6)
C11—N2—C12117.5 (6)C10—C9—C8118.0 (6)
C11—N2—Co1126.7 (5)C10—C9—H9121.0
C12—N2—Co1115.3 (4)C8—C9—H9121.0
C6—N3—C5107.3 (5)C9—C10—C11120.0 (6)
C6—N3—H3A126.4C9—C10—H10120.0
C5—N3—H3A126.4C11—C10—H10120.0
C6—N4—C7104.1 (5)N2—C11—C10122.9 (7)
Co1—O1—H1B124 (5)N2—C11—H11118.5
Co1—O1—H1C94 (5)C10—C11—H11118.5
H1B—O1—H1C121 (7)N2—C12—C8123.5 (6)
Co1—O2—H2B140 (5)N2—C12—C13115.6 (6)
Co1—O2—H2C105 (5)C8—C12—C13120.9 (6)
H2B—O2—H2C101 (7)N1—C13—C4122.0 (6)
S1—O3—Co1133.0 (3)N1—C13—C12118.2 (6)
S1—O6—Co1ii132.0 (3)C4—C13—C12119.7 (6)
O3—Co1—N1—C179.0 (5)C13—C4—C5—N3179.2 (7)
O6i—Co1—N1—C112.9 (5)C3—C4—C5—N32.5 (12)
O2—Co1—N1—C1168.3 (9)C7—N4—C6—N30.6 (8)
O1—Co1—N1—C199.3 (5)C5—N3—C6—N40.7 (8)
N2—Co1—N1—C1175.9 (6)C6—N4—C7—C50.4 (8)
O3—Co1—N1—C13111.3 (5)C6—N4—C7—C8179.5 (7)
O6i—Co1—N1—C13156.9 (5)N3—C5—C7—N40.0 (8)
O2—Co1—N1—C1322.0 (13)C4—C5—C7—N4177.6 (6)
O1—Co1—N1—C1370.4 (5)N3—C5—C7—C8179.9 (6)
N2—Co1—N1—C1314.3 (4)C4—C5—C7—C82.5 (11)
O3—Co1—N2—C1188.4 (6)N4—C7—C8—C12179.6 (7)
O6i—Co1—N2—C11150.2 (7)C5—C7—C8—C120.5 (10)
O2—Co1—N2—C113.5 (6)N4—C7—C8—C91.8 (12)
O1—Co1—N2—C1197.1 (6)C5—C7—C8—C9178.3 (7)
N1—Co1—N2—C11174.9 (6)C12—C8—C9—C100.3 (10)
O3—Co1—N2—C1299.8 (5)C7—C8—C9—C10178.2 (6)
O6i—Co1—N2—C1221.7 (10)C8—C9—C10—C111.0 (10)
O2—Co1—N2—C12168.3 (5)C12—N2—C11—C103.1 (10)
O1—Co1—N2—C1274.8 (5)Co1—N2—C11—C10168.6 (5)
N1—Co1—N2—C1213.2 (4)C9—C10—C11—N20.5 (11)
O4—S1—O3—Co1102.4 (4)C11—N2—C12—C84.4 (10)
O6—S1—O3—Co1139.3 (3)Co1—N2—C12—C8168.2 (5)
O5—S1—O3—Co119.1 (4)C11—N2—C12—C13176.7 (6)
O6i—Co1—O3—S189.7 (4)Co1—N2—C12—C1310.7 (7)
O2—Co1—O3—S17.9 (4)C9—C8—C12—N23.0 (10)
N1—Co1—O3—S1176.5 (4)C7—C8—C12—N2179.0 (6)
N2—Co1—O3—S1103.6 (4)C9—C8—C12—C13178.1 (6)
O4—S1—O6—Co1ii168.3 (3)C7—C8—C12—C130.1 (10)
O3—S1—O6—Co1ii72.9 (4)C1—N1—C13—C41.4 (10)
O5—S1—O6—Co1ii47.3 (4)Co1—N1—C13—C4168.9 (5)
C13—N1—C1—C20.1 (10)C1—N1—C13—C12175.5 (6)
Co1—N1—C1—C2169.4 (5)Co1—N1—C13—C1214.1 (8)
N1—C1—C2—C31.0 (11)C5—C4—C13—N1179.6 (6)
C1—C2—C3—C40.5 (11)C3—C4—C13—N11.9 (10)
C2—C3—C4—C5179.3 (7)C5—C4—C13—C123.5 (10)
C2—C3—C4—C130.9 (10)C3—C4—C13—C12175.0 (6)
C6—N3—C5—C70.4 (7)N2—C12—C13—N12.3 (9)
C6—N3—C5—C4177.7 (7)C8—C12—C13—N1178.8 (6)
C13—C4—C5—C74.0 (11)N2—C12—C13—C4179.3 (6)
C3—C4—C5—C7174.3 (7)C8—C12—C13—C41.7 (10)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O50.83 (5)1.91 (3)2.698 (7)159 (7)
O1—H1C···O5i0.82 (5)2.00 (4)2.749 (6)150 (7)
O2—H2B···O6iii0.82 (5)2.18 (3)2.957 (7)158 (6)
O1—H1B···N4iv0.84 (5)1.91 (5)2.731 (7)168 (7)
N3—H3A···O4v0.861.952.795 (6)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(SO4)(C13H8N4)(H2O)2]
Mr411.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.916 (4), 7.017 (2), 19.690 (7)
β (°) 99.353 (7)
V3)1488.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.27 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.714, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
7263, 2639, 1216
Rint0.108
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.100, 1.24
No. of reflections2639
No. of parameters242
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.80

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O50.83 (5)1.91 (3)2.698 (7)159 (7)
O1—H1C···O5i0.82 (5)2.00 (4)2.749 (6)150 (7)
O2—H2B···O6ii0.82 (5)2.18 (3)2.957 (7)158 (6)
O1—H1B···N4iii0.84 (5)1.91 (5)2.731 (7)168 (7)
N3—H3A···O4iv0.861.952.795 (6)168.2
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x1, y, z.
 

Acknowledgements

The author gratefully acknowledges financial support from the Youth Foundation of Lishui University, China (grant No. QN07014).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, A. K., Ghoshal, D., Lu, T. H., Mostafa, G. & Chaudhuri, N. R. (2004). Cryst. Growth Des. 4, 581–857.  Web of Science CSD CrossRef Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Y., He, X.-F., Zou, X.-H., Wu, J.-Z., Chen, X.-M., Ji, L.-N., Li, R.-H., Zhou, J.-Y. & Yu, K.-B. (1999). J. Chem. Soc. Dalton Trans. pp. 19–24.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds