organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Phenyl­imino­di­methyl­ene)di­prop-2-enamide hemihydrate

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: vembu57@yahoo.com

(Received 3 May 2009; accepted 12 May 2009; online 20 May 2009)

In the title compound, C14H17N3O2·0.5H2O, the asymmetric unit consists of an N,N′-(phenyl­imino­dimethyl­ene)diprop-2-enamide mol­ecule and one half-mol­ecule of water, with the O atom of the latter having 2 site symmetry. The supra­molecular architecture is framed by the inter­play of two-dimensional networks of both O—H⋯O and N—H⋯O inter­actions supported by C—H⋯O and edge-to-face C—H⋯π inter­actions.

Related literature

For a detailed description of Mannich bases and their applications, see: Friedrich et al. (1991[Friedrich, C., Dallman, A., Mannich, C. & Pharmazie, D. (1991). Pharm. Ztg, 136, 691-701.]); Bohme & Mannich (1955[Bohme, H. & Mannich, C. (1955). Chem. Ber. 88, I-XXVI.]); Afsah et al. (2008[Afsah, E. M., Hammouda, M., Khalifa, M. M. & Al-shahaby, E. H. (2008). Z. Naturforsch. Teil B, 63, 577-584.]); Terzioglu et al. (2006[Terzioglu, N., Karali, N., Gursoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., De Neyts, J. & Clercq, E. (2006). Arkivoc, pp. 109-118.]); Ravichandran et al. (2007[Ravichandran, V., Mohan, S. & Suresh Kumar, K. (2007). Arkivoc Newslett. 14, 51-57.]); Pandeya et al. (2000[Pandeya, S. N., Sriram, D., De Clercq, E. & Nath, G. (2000). Arzneim Forsch. 35, 249-255.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O2·0.5H2O

  • Mr = 268.31

  • Orthorhombic, P b c n

  • a = 17.074 (2) Å

  • b = 9.8366 (15) Å

  • c = 16.316 (2) Å

  • V = 2740.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.30 × 0.23 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: none

  • 9467 measured reflections

  • 5065 independent reflections

  • 3885 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.02

  • 5065 reflections

  • 249 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O11 0.876 (15) 2.318 (15) 3.0476 (11) 140.8 (12)
C4—H4A⋯O7 0.984 (13) 2.366 (13) 2.8089 (12) 106.5 (9)
C15—H15⋯O7 0.953 (14) 2.563 (14) 3.4922 (14) 165.1 (10)
OW—HW⋯O7i 0.845 (17) 1.990 (17) 2.8193 (9) 166.7 (16)
N1—H1⋯O11ii 0.891 (15) 2.089 (15) 2.9651 (11) 167.4 (14)
C2—H2BCg1iii 0.966 (13) 3.178 3.874 130.40
C8—H8⋯Cg1iv 0.966 (16) 2.571 (15) 3.4444 (12) 150.6 (13)
Symmetry codes: (i) [-x+2, y, -z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+2, -y+2, -z; (iv) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, z]. Cg1 is the centroid of the C14–C19 ring.

Data collection: COLLECT (Nonius, 2000[Nonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Mannich reaction is a three-component condensation in which a compound containing an active H atom (substrate) is allowed to react with an aldehyde or ketone and a primary or secondary amine with concomitant release of water to produce a new base known as a Mannich base, in which the active hydrogen is replaced by an aminomethyl group. The formation of both carbon-carbon and carbon-nitrogen bond in this aminomethylation process makes the Mannich reaction an extremely useful synthetic transformation. Mannich bases have wide application in the areas of pharmaceutics (Friedrich et al., 1991) and macromolecular chemistry (Bohme & Mannich, 1955; Afsah et al., 2008). Some Mannich bases have antimalarial, antiviral (Terzioglu et al., 2006) properties while some other act as antihistamines, anti-inflammatories (Ravichandran et al., 2007) and antimicrobials (Pandeya et al., 2000). The present investigation is aimed at the elucidation of the molecular and crystal structure of the title compound which was obtained by the Mannich condendation of aniline, formaldehyde and acrylamide.

The asymmetric unit of (I) consists of N,N-[(phenylimino)dimethanediyl]bisprop-2-enamide and half a water molecule (Fig. 1).

The crystal structure of (I) is stabilized by O—H···O, N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for O—H···O & N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). Each of N5—H5···O11 and C15—H15···O7 interactions generate a ring motif of graph set (Bernstein et al., 1995; Etter, 1990), S(8). An S(5) motif is formed by C4—H4A···O7. The Ow—Hw···O7i, N1—H1···O11ii and N5—H5···O11 interactions together generate an extended two dimensional network along the base vectors, [0 1 0] & [1 0 0] and through the plane (0 0 - 1). The supramolecular architecture is completed by the interplay of two edge to face C—H···π interactions (Table 1).

Related literature top

For a detailed description of Mannich bases and their applications, see: Friedrich et al. (1991); Bohme & Mannich (1955); Afsah et al. (2008); Terzioglu et al. (2006); Ravichandran et al. (2007); Pandeya et al. (2000). For hydrogen bonds, see: Desiraju & Steiner (1999); Jeffrey (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). Cg1 is the centroid of the C14–C19 ring.

Experimental top

7.1 g (0.1 mol) acrylamide and 10 ml (0.1M) of formaldehyde were dissolved in minimum amount of distilled water and the contents were mixed well to get a clear solution. 10 ml (0.1M) of aniline was added to the mixture in small installments with stirring. After 48 hr colorless solid was obtained which was washed with ethanol and dried at 343 K. The resulting organic compound was recrystallized from hot ethanol to yield the diffraction quality crystals of the title compound.

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters were freely refined.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed along the b-axis. Dashed lines represent the O—H···O, N—H···O and C—H···O interactions within the lattice.
N,N'-(Phenyliminodimethylene)diprop-2-enamide hemihydrate top
Crystal data top
C14H17N3O2·0.5H2ODx = 1.301 Mg m3
Mr = 268.31Melting point: 398 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 34434 reflections
a = 17.074 (2) Åθ = 2.5–33.0°
b = 9.8366 (15) ŵ = 0.09 mm1
c = 16.316 (2) ÅT = 90 K
V = 2740.3 (6) Å3Fragment, colorless
Z = 80.30 × 0.23 × 0.12 mm
F(000) = 1144
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 33.0°, θmin = 2.7°
ω and ϕ scansh = 2626
9467 measured reflectionsk = 1515
5065 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.120All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.7128P]
where P = (Fo2 + 2Fc2)/3
5065 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H17N3O2·0.5H2OV = 2740.3 (6) Å3
Mr = 268.31Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 17.074 (2) ŵ = 0.09 mm1
b = 9.8366 (15) ÅT = 90 K
c = 16.316 (2) Å0.30 × 0.23 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
3885 reflections with I > 2σ(I)
9467 measured reflectionsRint = 0.030
5065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.02Δρmax = 0.39 e Å3
5065 reflectionsΔρmin = 0.28 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.80007 (5)0.89440 (8)0.13232 (5)0.01594 (16)
C20.88056 (6)0.84769 (10)0.12071 (6)0.01569 (17)
N30.89921 (5)0.80690 (8)0.03825 (5)0.01545 (16)
C40.91579 (6)0.66584 (10)0.02225 (6)0.01665 (18)
N50.85082 (5)0.59623 (8)0.01804 (5)0.01671 (16)
C60.85921 (6)0.52348 (9)0.08750 (6)0.01635 (18)
O70.92364 (4)0.50903 (8)0.12139 (5)0.02232 (17)
C80.78566 (6)0.46251 (11)0.11941 (6)0.0210 (2)
C90.78569 (7)0.37886 (13)0.18250 (7)0.0267 (2)
C100.73876 (5)0.80842 (9)0.13486 (5)0.01421 (17)
O110.74626 (4)0.68455 (7)0.12367 (4)0.01761 (15)
C120.66234 (6)0.87457 (10)0.15303 (6)0.01837 (19)
C130.59676 (6)0.80534 (12)0.16321 (7)0.0247 (2)
C140.90493 (5)0.90267 (10)0.02424 (6)0.01502 (17)
C150.91823 (5)0.86297 (11)0.10565 (6)0.01785 (19)
C160.92620 (6)0.96063 (12)0.16649 (6)0.0226 (2)
C170.92139 (6)1.09817 (12)0.14964 (7)0.0249 (2)
C180.90668 (6)1.13762 (11)0.06939 (7)0.0229 (2)
C190.89752 (6)1.04206 (10)0.00757 (7)0.01868 (19)
OW1.00000.37093 (12)0.25000.0356 (3)
H10.7899 (9)0.9829 (15)0.1371 (9)0.028 (4)*
H2A0.8901 (7)0.7705 (14)0.1559 (8)0.018 (3)*
H2B0.9140 (7)0.9206 (14)0.1393 (8)0.015 (3)*
H4A0.9616 (8)0.6566 (13)0.0140 (8)0.018 (3)*
H4B0.9274 (7)0.6225 (13)0.0743 (8)0.017 (3)*
H50.8046 (9)0.6058 (14)0.0045 (9)0.027 (3)*
H80.7378 (9)0.4864 (15)0.0914 (10)0.035 (4)*
H9A0.7377 (8)0.3357 (15)0.2005 (9)0.029 (4)*
H9B0.8348 (9)0.3542 (15)0.2119 (10)0.036 (4)*
H120.6636 (9)0.9714 (16)0.1589 (10)0.034 (4)*
H13A0.5471 (8)0.8504 (15)0.1751 (8)0.027 (3)*
H13B0.5952 (10)0.7040 (19)0.1577 (11)0.045 (5)*
H150.9212 (7)0.7696 (15)0.1208 (8)0.018 (3)*
H160.9353 (9)0.9338 (15)0.2219 (9)0.031 (4)*
H170.9294 (9)1.1688 (16)0.1936 (10)0.038 (4)*
H180.9027 (8)1.2309 (16)0.0557 (9)0.029 (4)*
H190.8871 (8)1.0736 (14)0.0458 (9)0.022 (3)*
HW1.0232 (10)0.4232 (17)0.2832 (11)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0168 (4)0.0121 (3)0.0189 (4)0.0001 (3)0.0009 (3)0.0017 (3)
C20.0163 (4)0.0169 (4)0.0138 (4)0.0001 (3)0.0014 (3)0.0017 (3)
N30.0195 (4)0.0131 (3)0.0137 (3)0.0013 (3)0.0007 (3)0.0011 (3)
C40.0184 (4)0.0141 (4)0.0175 (4)0.0024 (3)0.0011 (3)0.0010 (3)
N50.0166 (4)0.0167 (4)0.0168 (4)0.0006 (3)0.0038 (3)0.0035 (3)
C60.0181 (4)0.0153 (4)0.0157 (4)0.0014 (3)0.0026 (3)0.0010 (3)
O70.0176 (3)0.0259 (4)0.0235 (4)0.0004 (3)0.0054 (3)0.0080 (3)
C80.0177 (4)0.0243 (5)0.0210 (5)0.0002 (4)0.0027 (3)0.0048 (4)
C90.0219 (5)0.0343 (6)0.0241 (5)0.0014 (4)0.0020 (4)0.0094 (4)
C100.0172 (4)0.0133 (4)0.0122 (4)0.0002 (3)0.0010 (3)0.0001 (3)
O110.0213 (3)0.0118 (3)0.0197 (3)0.0002 (2)0.0004 (3)0.0009 (2)
C120.0191 (4)0.0148 (4)0.0212 (5)0.0011 (3)0.0008 (3)0.0012 (3)
C130.0204 (5)0.0241 (5)0.0294 (5)0.0018 (4)0.0037 (4)0.0072 (4)
C140.0119 (4)0.0163 (4)0.0169 (4)0.0010 (3)0.0011 (3)0.0011 (3)
C150.0154 (4)0.0199 (5)0.0182 (4)0.0000 (3)0.0031 (3)0.0010 (4)
C160.0184 (4)0.0305 (6)0.0189 (5)0.0014 (4)0.0038 (4)0.0055 (4)
C170.0208 (5)0.0264 (5)0.0274 (5)0.0039 (4)0.0000 (4)0.0116 (4)
C180.0206 (5)0.0177 (5)0.0305 (6)0.0034 (3)0.0044 (4)0.0054 (4)
C190.0180 (4)0.0164 (4)0.0216 (5)0.0016 (3)0.0032 (3)0.0002 (3)
OW0.0567 (8)0.0170 (5)0.0330 (7)0.0000.0289 (6)0.000
Geometric parameters (Å, º) top
N1—C101.3465 (12)C10—O111.2387 (11)
N1—C21.4613 (13)C10—C121.4878 (14)
N1—H10.891 (15)C12—C131.3210 (15)
C2—N31.4397 (12)C12—H120.957 (16)
C2—H2A0.966 (13)C13—H13A0.976 (14)
C2—H2B0.966 (13)C13—H13B1.001 (19)
N3—C141.3915 (12)C14—C151.4030 (14)
N3—C41.4400 (12)C14—C191.4036 (14)
C4—N51.4599 (12)C15—C161.3880 (14)
C4—H4A0.984 (13)C15—H150.953 (14)
C4—H4B0.970 (13)C16—C171.3830 (17)
N5—C61.3480 (12)C16—H160.954 (15)
N5—H50.876 (15)C17—C181.3886 (17)
C6—O71.2394 (12)C17—H171.008 (16)
C6—C81.4859 (14)C18—C191.3876 (15)
C8—C91.3178 (15)C18—H180.947 (16)
C8—H80.966 (16)C19—H190.942 (14)
C9—H9A0.969 (14)OW—HW0.845 (17)
C9—H9B0.996 (16)
C10—N1—C2122.52 (8)H9A—C9—H9B117.4 (12)
C10—N1—H1117.3 (10)O11—C10—N1122.20 (9)
C2—N1—H1120.2 (10)O11—C10—C12123.38 (9)
N3—C2—N1114.64 (8)N1—C10—C12114.41 (8)
N3—C2—H2A107.4 (8)C13—C12—C10122.88 (9)
N1—C2—H2A109.2 (8)C13—C12—H12121.3 (9)
N3—C2—H2B111.7 (8)C10—C12—H12115.8 (9)
N1—C2—H2B106.4 (8)C12—C13—H13A121.8 (9)
H2A—C2—H2B107.3 (11)C12—C13—H13B121.6 (10)
C14—N3—C2120.77 (8)H13A—C13—H13B116.6 (13)
C14—N3—C4120.38 (8)N3—C14—C15121.10 (9)
C2—N3—C4118.78 (8)N3—C14—C19120.87 (9)
N3—C4—N5112.59 (8)C15—C14—C19118.03 (9)
N3—C4—H4A110.7 (7)C16—C15—C14120.02 (10)
N5—C4—H4A106.8 (7)C16—C15—H15118.5 (8)
N3—C4—H4B107.8 (8)C14—C15—H15121.5 (8)
N5—C4—H4B110.0 (8)C17—C16—C15121.95 (10)
H4A—C4—H4B108.8 (11)C17—C16—H16118.0 (9)
C6—N5—C4123.15 (8)C15—C16—H16120.1 (9)
C6—N5—H5120.4 (10)C16—C17—C18118.13 (10)
C4—N5—H5116.4 (9)C16—C17—H17121.7 (9)
O7—C6—N5122.03 (9)C18—C17—H17120.2 (9)
O7—C6—C8123.19 (9)C19—C18—C17121.10 (10)
N5—C6—C8114.78 (8)C19—C18—H18118.4 (9)
C9—C8—C6121.70 (9)C17—C18—H18120.5 (9)
C9—C8—H8121.4 (9)C18—C19—C14120.72 (10)
C6—C8—H8116.9 (9)C18—C19—H19118.1 (8)
C8—C9—H9A120.7 (9)C14—C19—H19121.2 (8)
C8—C9—H9B121.9 (9)
C10—N1—C2—N375.00 (12)N1—C10—C12—C13175.46 (10)
N1—C2—N3—C1470.15 (11)C2—N3—C14—C15175.96 (8)
N1—C2—N3—C4112.95 (9)C4—N3—C14—C157.19 (13)
C14—N3—C4—N578.90 (10)C2—N3—C14—C194.02 (13)
C2—N3—C4—N5104.19 (10)C4—N3—C14—C19172.83 (8)
N3—C4—N5—C6127.89 (10)N3—C14—C15—C16177.94 (9)
C4—N5—C6—O71.15 (15)C19—C14—C15—C162.09 (13)
C4—N5—C6—C8179.03 (9)C14—C15—C16—C170.07 (15)
O7—C6—C8—C95.99 (17)C15—C16—C17—C181.19 (16)
N5—C6—C8—C9173.83 (11)C16—C17—C18—C190.39 (15)
C2—N1—C10—O113.45 (14)C17—C18—C19—C141.67 (15)
C2—N1—C10—C12175.89 (8)N3—C14—C19—C18177.14 (9)
O11—C10—C12—C133.88 (16)C15—C14—C19—C182.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O110.876 (15)2.318 (15)3.0476 (11)140.8 (12)
C4—H4A···O70.984 (13)2.366 (13)2.8089 (12)106.5 (9)
C15—H15···O70.953 (14)2.563 (14)3.4922 (14)165.1 (10)
OW—HW···O7i0.845 (17)1.990 (17)2.8193 (9)166.7 (16)
N1—H1···O11ii0.891 (15)2.089 (15)2.9651 (11)167.4 (14)
C2—H2B···Cg1iii0.966 (13)3.1783.874130.40
C8—H8···Cg1iv0.966 (16)2.5713.444150.57
Symmetry codes: (i) x+2, y, z1/2; (ii) x+3/2, y+1/2, z; (iii) x+2, y+2, z; (iv) x+1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaC14H17N3O2·0.5H2O
Mr268.31
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)90
a, b, c (Å)17.074 (2), 9.8366 (15), 16.316 (2)
V3)2740.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.23 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9467, 5065, 3885
Rint0.030
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.02
No. of reflections5065
No. of parameters249
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O110.876 (15)2.318 (15)3.0476 (11)140.8 (12)
C4—H4A···O70.984 (13)2.366 (13)2.8089 (12)106.5 (9)
C15—H15···O70.953 (14)2.563 (14)3.4922 (14)165.1 (10)
OW—HW···O7i0.845 (17)1.990 (17)2.8193 (9)166.7 (16)
N1—H1···O11ii0.891 (15)2.089 (15)2.9651 (11)167.4 (14)
C2—H2B···Cg1iii0.966 (13)3.1783.874130.40
C8—H8···Cg1iv0.966 (16)2.5713.444150.57
Symmetry codes: (i) x+2, y, z1/2; (ii) x+3/2, y+1/2, z; (iii) x+2, y+2, z; (iv) x+1/2, y3/2, z.
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAfsah, E. M., Hammouda, M., Khalifa, M. M. & Al-shahaby, E. H. (2008). Z. Naturforsch. Teil B, 63, 577–584.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBohme, H. & Mannich, C. (1955). Chem. Ber. 88, I–XXVI.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFriedrich, C., Dallman, A., Mannich, C. & Pharmazie, D. (1991). Pharm. Ztg, 136, 691–701.  Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.  Google Scholar
First citationNonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPandeya, S. N., Sriram, D., De Clercq, E. & Nath, G. (2000). Arzneim Forsch. 35, 249–255.  CAS Google Scholar
First citationRavichandran, V., Mohan, S. & Suresh Kumar, K. (2007). Arkivoc Newslett. 14, 51–57.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N., Karali, N., Gursoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., De Neyts, J. & Clercq, E. (2006). Arkivoc, pp. 109–118.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds