organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Amino­ethyl)-5-(di­methyl­amino)naphthalene-1-sulfonamide

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and bMedical School, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 4 May 2009; accepted 23 May 2009; online 29 May 2009)

In the title compound, C14H19N3O2S, the N atom of the dimethyl­amino group and the S atom are displaced by 0.078 (2) and 0.084 (2) Å, respectively, from the naphthalene ring plane. The 2-amino­ethyl group has a coiled conformation with an N—C—C—NH2 torsion angle of 53.6 (4)°. In the crystal structure, inter­molecular N—H⋯N and weak C—H⋯O hydrogen bonds link mol­ecules into chains along [001].

Related literature

For applications of ligands containing the 5-(dimethyl­amino)naphthalene-1-sulfonyl (dans­yl) group, see: Corradini et al. (1996[Corradini, R., Dossena, A., Marchelli, R., Panagia, A., Sartor, G., Saviano, M., Lombardi, A. & Pavone, V. (1996). Chem. Eur. J. 2, 373-381.], 1997[Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283-6289.]); Christoforou et al. (2006[Christoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771-6781.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3O2S

  • Mr = 293.38

  • Orthorhombic, P n a 21

  • a = 15.5221 (15) Å

  • b = 11.5423 (11) Å

  • c = 8.1360 (8) Å

  • V = 1457.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.956

  • 7478 measured reflections

  • 3140 independent reflections

  • 3012 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.11

  • 3140 reflections

  • 192 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1332 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.48 3.093 (3) 123
N3—H3A⋯N2 0.88 (5) 2.52 (6) 2.972 (4) 113 (4)
C11—H11⋯O1i 0.93 2.49 3.146 (3) 128
N2—H2D⋯N3ii 0.87 (3) 2.02 (4) 2.869 (4) 163 (3)
Symmetry codes: (i) x, y, z+1; (ii) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) group has been widely used as a fluorophore in the design of fluorescent probes. Recently many fluorescent ligands bearing dansyl group have been reported (Corradini et al., 1996,1997; Christoforou et al., 2006). We are interested in preparing fluorescent ligands that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecule (Fig. 1), atoms N1 and S1 are located approximately in the naphthalene ring plane with their deviations being 0.078 and 0.084 Å, respectively. The N2—C14—C15—N3 torsion angle of -53.6 (4)° indicates a coiled conformation for the aminoethyl group. In the crystal structure (Fig.2), intermolecular N—H···N and weak C-H···O hydrogen bonds link molecules into one-dimensional chains along [001].

Related literature top

For the applications of ligands containing the 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) group, see: Corradini et al. (1996, 1997); Christoforou et al. (2006).

Experimental top

Compound (I) was synthesized according to a literature procedure (Corradini et al., 1996). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution of (I) at room temperature.

Refinement top

All carbon bound H atoms were placed in their idealized positions [CH(methyl)=0.96 Å and C—H(aromatic) =0.93 Å] and included in the refinement in the riding-model approximation, with Uiso(methyl H)= 1.5Ueq(C) and Uiso(aromatic H) = 1.2Ueq(C). Hydrogen atoms bonded to nitrogen atoms were found in the difference Fourier maps and refined with the constraints of N—H = 0.869(Å) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing weak hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds are shown.
N-(2-Aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide top
Crystal data top
C14H19N3O2SF(000) = 624
Mr = 293.38Dx = 1.337 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4085 reflections
a = 15.5221 (15) Åθ = 2.2–28.0°
b = 11.5423 (11) ŵ = 0.23 mm1
c = 8.1360 (8) ÅT = 298 K
V = 1457.7 (2) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube3012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1913
Tmin = 0.956, Tmax = 0.956k = 1414
7478 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0989P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3140 reflectionsΔρmax = 0.24 e Å3
192 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1332 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C14H19N3O2SV = 1457.7 (2) Å3
Mr = 293.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.5221 (15) ŵ = 0.23 mm1
b = 11.5423 (11) ÅT = 298 K
c = 8.1360 (8) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3012 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.956Rint = 0.029
7478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.24 e Å3
S = 1.11Δρmin = 0.25 e Å3
3140 reflectionsAbsolute structure: Flack (1983), 1332 Friedel pairs
192 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6783 (2)0.2592 (3)1.2600 (5)0.0711 (9)
H1A0.61950.26201.22360.107*
H1B0.67970.25191.37750.107*
H1C0.70650.19371.21110.107*
C20.67195 (17)0.4676 (3)1.2579 (4)0.0615 (7)
H2A0.70300.53681.23000.092*
H2B0.66160.46591.37420.092*
H2C0.61800.46651.20040.092*
C30.75553 (12)0.36601 (19)1.0498 (3)0.0381 (5)
C40.72410 (14)0.43583 (19)0.9255 (3)0.0451 (5)
H40.67960.48740.94770.054*
C50.75833 (15)0.4299 (2)0.7670 (3)0.0480 (6)
H50.73500.47670.68530.058*
C60.82454 (15)0.3580 (2)0.7281 (3)0.0445 (5)
H60.84510.35470.62080.053*
C70.86251 (12)0.28748 (17)0.8530 (3)0.0323 (4)
C80.93538 (13)0.21356 (16)0.8264 (3)0.0309 (4)
C90.96977 (14)0.14947 (18)0.9519 (3)0.0366 (4)
H91.01580.09990.93110.044*
C100.93643 (14)0.15783 (18)1.1106 (3)0.0379 (4)
H100.96100.11511.19540.045*
C110.86816 (12)0.22823 (16)1.1418 (3)0.0363 (4)
H110.84730.23451.24860.044*
C120.82814 (12)0.29230 (16)1.0143 (3)0.0322 (4)
C141.10343 (19)0.3731 (3)0.6827 (4)0.0689 (9)
H14A1.13540.42250.60800.083*
H14B1.14000.30790.71070.083*
C151.0839 (2)0.4406 (3)0.8375 (5)0.0833 (11)
H15A1.06090.38740.91880.100*
H15B1.13750.47120.88050.100*
N10.72278 (13)0.36630 (17)1.2108 (3)0.0467 (5)
O10.92413 (13)0.18510 (17)0.5084 (2)0.0558 (5)
O21.05529 (12)0.12231 (15)0.6510 (2)0.0553 (4)
N21.02722 (14)0.33007 (18)0.5987 (3)0.0495 (5)
H2D1.0054 (19)0.358 (3)0.508 (5)0.059*
N31.0237 (3)0.5358 (3)0.8182 (5)0.0993 (13)
H3A0.980 (3)0.499 (5)0.773 (8)0.119*
H3B1.044 (3)0.588 (4)0.752 (7)0.119*
S10.98740 (3)0.20448 (4)0.63277 (8)0.03840 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0693 (17)0.0655 (18)0.079 (2)0.0010 (15)0.0311 (15)0.0156 (17)
C20.0547 (14)0.0663 (17)0.0635 (18)0.0210 (13)0.0108 (12)0.0083 (14)
C30.0340 (10)0.0365 (11)0.0439 (12)0.0001 (8)0.0005 (9)0.0006 (9)
C40.0377 (10)0.0406 (12)0.0570 (14)0.0071 (9)0.0008 (10)0.0082 (11)
C50.0472 (12)0.0486 (13)0.0482 (14)0.0062 (10)0.0097 (10)0.0171 (11)
C60.0533 (12)0.0461 (12)0.0343 (11)0.0003 (10)0.0053 (9)0.0120 (10)
C70.0331 (9)0.0315 (9)0.0323 (10)0.0037 (7)0.0041 (8)0.0023 (8)
C80.0369 (10)0.0294 (9)0.0264 (10)0.0018 (8)0.0014 (8)0.0008 (8)
C90.0418 (10)0.0344 (11)0.0336 (10)0.0061 (8)0.0015 (9)0.0015 (8)
C100.0450 (10)0.0387 (10)0.0299 (11)0.0066 (8)0.0045 (8)0.0077 (8)
C110.0434 (10)0.0367 (9)0.0286 (9)0.0018 (7)0.0003 (9)0.0037 (9)
C120.0328 (9)0.0303 (10)0.0335 (10)0.0049 (7)0.0015 (8)0.0030 (8)
C140.0647 (16)0.0609 (16)0.081 (3)0.0208 (14)0.0173 (15)0.0189 (15)
C150.099 (2)0.077 (2)0.075 (2)0.034 (2)0.012 (2)0.0264 (19)
N10.0462 (10)0.0458 (11)0.0482 (11)0.0089 (9)0.0133 (9)0.0015 (9)
O10.0778 (12)0.0595 (11)0.0302 (8)0.0089 (9)0.0003 (8)0.0045 (8)
O20.0729 (10)0.0498 (9)0.0432 (9)0.0162 (8)0.0174 (9)0.0028 (8)
N20.0641 (13)0.0425 (10)0.0420 (14)0.0092 (9)0.0122 (9)0.0037 (9)
N30.158 (4)0.0527 (18)0.087 (2)0.0261 (19)0.036 (2)0.0248 (16)
S10.0538 (3)0.0341 (2)0.0274 (2)0.00129 (19)0.0066 (3)0.0034 (3)
Geometric parameters (Å, º) top
C1—N11.472 (3)C8—S11.773 (2)
C1—H1A0.9600C9—C101.395 (3)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—C111.359 (3)
C2—N11.461 (3)C10—H100.9300
C2—H2A0.9600C11—C121.417 (3)
C2—H2B0.9600C11—H110.9300
C2—H2C0.9600C14—N21.454 (4)
C3—C41.382 (3)C14—C151.511 (5)
C3—N11.405 (3)C14—H14A0.9700
C3—C121.441 (3)C14—H14B0.9700
C4—C51.396 (3)C15—N31.450 (5)
C4—H40.9300C15—H15A0.9700
C5—C61.358 (3)C15—H15B0.9700
C5—H50.9300O1—S11.4278 (19)
C6—C71.429 (3)O2—S11.4255 (18)
C6—H60.9300N2—S11.600 (2)
C7—C121.417 (3)N2—H2D0.87 (3)
C7—C81.433 (3)N3—H3A0.88 (5)
C8—C91.369 (3)N3—H3B0.87 (5)
N1—C1—H1A109.5C9—C10—H10119.9
N1—C1—H1B109.5C10—C11—C12121.1 (2)
H1A—C1—H1B109.5C10—C11—H11119.4
N1—C1—H1C109.5C12—C11—H11119.4
H1A—C1—H1C109.5C11—C12—C7119.47 (18)
H1B—C1—H1C109.5C11—C12—C3120.3 (2)
N1—C2—H2A109.5C7—C12—C3120.20 (18)
N1—C2—H2B109.5N2—C14—C15113.9 (3)
H2A—C2—H2B109.5N2—C14—H14A108.8
N1—C2—H2C109.5C15—C14—H14A108.8
H2A—C2—H2C109.5N2—C14—H14B108.8
H2B—C2—H2C109.5C15—C14—H14B108.8
C4—C3—N1123.6 (2)H14A—C14—H14B107.7
C4—C3—C12118.3 (2)N3—C15—C14115.5 (3)
N1—C3—C12118.11 (19)N3—C15—H15A108.4
C3—C4—C5120.8 (2)C14—C15—H15A108.4
C3—C4—H4119.6N3—C15—H15B108.4
C5—C4—H4119.6C14—C15—H15B108.4
C6—C5—C4122.3 (2)H15A—C15—H15B107.5
C6—C5—H5118.9C3—N1—C2116.2 (2)
C4—C5—H5118.9C3—N1—C1114.9 (2)
C5—C6—C7119.6 (2)C2—N1—C1110.3 (2)
C5—C6—H6120.2C14—N2—S1122.8 (2)
C7—C6—H6120.2C14—N2—H2D126 (2)
C12—C7—C6118.73 (19)S1—N2—H2D109 (2)
C12—C7—C8117.42 (17)C15—N3—H3A100 (3)
C6—C7—C8123.8 (2)C15—N3—H3B111 (3)
C9—C8—C7121.08 (19)H3A—N3—H3B111 (5)
C9—C8—S1116.94 (16)O2—S1—O1118.56 (12)
C7—C8—S1121.94 (15)O2—S1—N2109.58 (12)
C8—C9—C10120.57 (19)O1—S1—N2106.55 (12)
C8—C9—H9119.7O2—S1—C8106.46 (10)
C10—C9—H9119.7O1—S1—C8109.01 (10)
C11—C10—C9120.2 (2)N2—S1—C8106.04 (10)
C11—C10—H10119.9
N1—C3—C4—C5178.7 (2)C4—C3—C12—C11173.49 (19)
C12—C3—C4—C53.9 (3)N1—C3—C12—C114.0 (3)
C3—C4—C5—C61.4 (4)C4—C3—C12—C73.6 (3)
C4—C5—C6—C71.5 (4)N1—C3—C12—C7178.89 (18)
C5—C6—C7—C121.7 (3)N2—C14—C15—N353.6 (4)
C5—C6—C7—C8176.60 (19)C4—C3—N1—C218.4 (3)
C12—C7—C8—C90.6 (3)C12—C3—N1—C2159.0 (2)
C6—C7—C8—C9178.9 (2)C4—C3—N1—C1112.6 (3)
C12—C7—C8—S1177.20 (14)C12—C3—N1—C170.0 (3)
C6—C7—C8—S11.1 (3)C15—C14—N2—S191.9 (3)
C7—C8—C9—C102.3 (3)C14—N2—S1—O240.1 (2)
S1—C8—C9—C10175.56 (16)C14—N2—S1—O1169.58 (19)
C8—C9—C10—C111.3 (3)C14—N2—S1—C874.4 (2)
C9—C10—C11—C121.5 (3)C9—C8—S1—O23.06 (19)
C10—C11—C12—C73.2 (3)C7—C8—S1—O2179.09 (16)
C10—C11—C12—C3179.68 (19)C9—C8—S1—O1132.05 (17)
C6—C7—C12—C11176.28 (19)C7—C8—S1—O150.11 (19)
C8—C7—C12—C112.1 (3)C9—C8—S1—N2113.59 (18)
C6—C7—C12—C30.8 (3)C7—C8—S1—N264.25 (19)
C8—C7—C12—C3179.24 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.483.093 (3)123
N3—H3A···N20.88 (5)2.52 (6)2.972 (4)113 (4)
C11—H11···O1i0.932.493.146 (3)128
N2—H2D···N3ii0.87 (3)2.02 (4)2.869 (4)163 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H19N3O2S
Mr293.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)15.5221 (15), 11.5423 (11), 8.1360 (8)
V3)1457.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.956, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
7478, 3140, 3012
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.11
No. of reflections3140
No. of parameters192
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25
Absolute structureFlack (1983), 1332 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.483.093 (3)123
N3—H3A···N20.88 (5)2.52 (6)2.972 (4)113 (4)
C11—H11···O1i0.932.493.146 (3)128
N2—H2D···N3ii0.87 (3)2.02 (4)2.869 (4)163 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z1/2.
 

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771–6781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCorradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283–6289.  CrossRef CAS Web of Science Google Scholar
First citationCorradini, R., Dossena, A., Marchelli, R., Panagia, A., Sartor, G., Saviano, M., Lombardi, A. & Pavone, V. (1996). Chem. Eur. J. 2, 373–381.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds