organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1322-o1323

7,7′,8,8′-Tetra­meth­­oxy-4,4′-di­methyl-3,5′-bichromene-2,2′-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002 (UP), India
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2009; accepted 13 May 2009; online 20 May 2009)

In the title mol­ecule, C24H22O8, the mean planes of the two coumarin units are inclined to each other at a dihedral angle of 79.93 (3)°. The attached meth­oxy groups form torsion angles of 7.65 (19) and 78.36 (14)° with respect to one coumarin unit, and angles of 9.01 (16) and 99.08 (11)° with respect to the other coumarin unit. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect pairs of mol­ecules to form dimers, generating R22(16) and R22(18) rings; the dimers are linked by further weak inter­molecular C—H⋯O hydrogen bonds, forming extended chains. Additional stabil­ization is provided by weak C—H⋯π inter­actions.

Related literature

For the biological activity of coumarins, see: El-Agrody et al. (2001[El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519-527.]); El-Farargy (1991[El-Farargy, A. F. (1991). Egypt. J. Pharm. Sci. 32, 625-625.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717-722.]); Ghate et al. (2005[Ghate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem. 40, 882-887.]); Laakso et al. (1994[Laakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod. 57, 128-133.]); Nofal et al. (2000[Nofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99-113.]); Pratibha et al. (1999[Pratibha, S. & Shreeya, P. (1999). Indian J. Chem. Sect. B, 38, 1139-1142.]); Shaker (1996[Shaker, R. M. (1996). Pharmazie, 51, 148-148.]); Yang et al. (2005[Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852-60.]). For the pharmaceutical properties of coumarin derivatives, see: Kennedy et al. (1997[Kennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. New York: Wiley & Sons.]). For related literature on natural and synthetic coumarins, see: Carlton et al. (1996[Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145-151.]); Zhou et al. (2000[Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689-697.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22O8

  • Mr = 438.42

  • Monoclinic, P 21 /c

  • a = 9.4724 (1) Å

  • b = 23.4766 (3) Å

  • c = 9.3525 (1) Å

  • β = 96.254 (1)°

  • V = 2067.43 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.50 × 0.27 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.985

  • 58385 measured reflections

  • 7006 independent reflections

  • 6023 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.07

  • 7006 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O6i 0.96 2.55 3.2921 (15) 134
C22—H22A⋯O6ii 0.96 2.52 3.4385 (14) 161
C22—H22B⋯O8i 0.96 2.56 3.4401 (15) 152
C6—H6ACg1iii 0.93 2.92 3.6706 (12) 138
C19—H19ACg2iv 0.96 2.60 3.5446 (14) 170
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+2, -z+2; (iii) x+1, y, z; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1 is the centroid of the O7/C14–C18 ring and Cg2 is the centroid of the C10–C18 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are a large group of naturally occurring oxygen heterocycles representing 2H-1-benzopyran-2-one derivatives. Many natural coumarins are reputed for their wide range of biological activites such as antibacterial (El-Agrody et al., 2001; Pratibha et al., 1999), antifungal (Shaker, 1996; El-Farargy, 1991), antioxidant (Yang et al., 2005), analgesic (Ghate et al., 2005), anti-inflammatory (Emmanuel-Giota et al., 2001) and antitumor (Nofal et al., 2000). Bi and tri-coumarins are a comparatively new group of compounds which are widespread in nature and their biological properties are also well known (Laakso et al., 1994). One of the characteristic pharmacological properties of coumarin derivatives is anticoagulant action (Kennedy et al., 1997). A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. Keeping in view of these biological importance of coumarins and their dimers, we have synthesized the title compound (I) and report herein its crystal structure.

The molecular structure of the title compound is shown in Fig .1. In crystal structure of (I) molecules are linked by weak intermolecular C-H···O hydrogen bonds to form R22(16) and R22(18) rings (Bernstein et al., (1995). The two coumarin units are essentially planar with the maximum deviation from planarity of 0.0665 (11)Å for atom C9 in the ring (O3/C1–C9) and 0.0419 (12)Å for atom C16 in the ring (O7/C10–C18). The two coumarin units forming a dihedral angle of 79.93 (3)° (O3/C1–C9:O7/C10–C18), indicating that they are inclined to each other. Two of the methoxy units attached to the each coumarin units are twisted from the plane of coumarin unit as indicated by the torsion angles of C19–O1—C4–C5=-7.65 (19)°; C20–O2–C3–C2=78.36 (14)°; C22–O5–C12–C11=9.01 (16)° and C23–O6–C13–C14=99.08 (11)°, respectively. The bond lengths Allen et al. (1987) and bond angles are normal.

The crystal packing is illustrated in Fig. 2. In addition C—H···π interactions help stabilize the crystal structure.

Related literature top

For the biological activity of coumarins, see: El-Agrody et al. (2001); El-Farargy (1991); Emmanuel-Giota et al. (2001); Ghate et al. (2005); Laakso et al. (1994); Nofal et al. (2000); Pratibha et al. (1999); Shaker (1996); Yang et al. (2005). For the pharmaceutical properties of coumarin derivatives, see: Kennedy et al. (1997). For related literature on natural and synthetic coumarins, see: Carlton et al. (1996); Zhou et al. (2000). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 is the centroid of the O7/C14–C18 ring and Cg2 is the centroid of the C10–C18 ring.

Experimental top

A mixture of 7,8-dimethoxy-4-methyl coumarin (2.20 g, 10 mmol) and manganese(III) acetate (0.774 g, 1 mmol) was stirred at room temperature, then 70% perchloric acid (0.8 g, 6 mmol) was added. The reaction mixture was heated under reflux at 114°C with stirring in the atmosphere of nitrogen for 3 h. The reaction mixture was cooled and diluted with 50 ml of benzene. The benzene solution was washed with water and aq. NaHCO3, dried over anhydrous Na2SO4 and left to evaporate. The residue showed two major compounds which were separated by column chromatography followed by preparative thin layer chromatography (Benzene: EtOAc, 9:1) into the title compound (I) (260 mg, 12%).

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of (I). Dashed lines indicate the hydrogen bonds.
7,7',8,8'-Tetramethoxy-4,4'-dimethyl-3,5'-bichromene-2,2'-dione top
Crystal data top
C24H22O8F(000) = 920
Mr = 438.42Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9875 reflections
a = 9.4724 (1) Åθ = 2.7–33.0°
b = 23.4766 (3) ŵ = 0.11 mm1
c = 9.3525 (1) ÅT = 100 K
β = 96.254 (1)°Plate, colourless
V = 2067.43 (4) Å30.50 × 0.27 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7006 independent reflections
Radiation source: fine-focus sealed tube6023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.949, Tmax = 0.985k = 3434
58385 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.8142P]
where P = (Fo2 + 2Fc2)/3
7006 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H22O8V = 2067.43 (4) Å3
Mr = 438.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4724 (1) ŵ = 0.11 mm1
b = 23.4766 (3) ÅT = 100 K
c = 9.3525 (1) Å0.50 × 0.27 × 0.14 mm
β = 96.254 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7006 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6023 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.985Rint = 0.030
58385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
7006 reflectionsΔρmin = 0.24 e Å3
295 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69654 (9)0.68242 (4)0.29953 (11)0.0282 (2)
O20.43643 (8)0.65723 (3)0.37372 (10)0.02296 (17)
O30.26852 (8)0.73969 (3)0.46388 (9)0.01987 (16)
O40.05685 (9)0.76180 (3)0.52477 (10)0.02502 (18)
O50.03012 (9)0.95276 (4)0.88144 (9)0.02254 (17)
O60.18774 (8)0.99197 (3)0.69969 (9)0.02027 (16)
O70.22134 (8)0.96109 (3)0.42722 (8)0.01782 (15)
O80.35251 (9)0.97343 (4)0.21952 (10)0.02664 (18)
C10.17182 (11)0.77961 (4)0.50060 (12)0.01762 (19)
C20.40061 (11)0.75552 (4)0.43041 (12)0.01703 (19)
C30.48594 (11)0.71220 (4)0.38541 (13)0.0191 (2)
C40.62110 (12)0.72617 (5)0.34739 (13)0.0217 (2)
C50.66991 (12)0.78230 (5)0.36156 (16)0.0274 (3)
H5A0.76070.79140.33980.033*
C60.58343 (12)0.82435 (5)0.40787 (15)0.0247 (2)
H6A0.61740.86150.41720.030*
C70.44578 (11)0.81239 (4)0.44116 (12)0.01799 (19)
C80.34781 (11)0.85546 (4)0.48140 (12)0.01690 (18)
C90.21437 (11)0.83939 (4)0.50522 (11)0.01574 (18)
C100.10535 (11)0.88049 (4)0.54652 (11)0.01548 (18)
C110.12224 (11)0.89822 (4)0.68924 (11)0.01727 (19)
H11A0.19960.88520.75020.021*
C120.02494 (11)0.93527 (4)0.74272 (11)0.01696 (18)
C130.09034 (11)0.95541 (4)0.65136 (11)0.01643 (18)
C140.10474 (10)0.93843 (4)0.50800 (11)0.01503 (18)
C150.24804 (11)0.95111 (5)0.28163 (12)0.0192 (2)
C160.15038 (12)0.91360 (5)0.21998 (12)0.01956 (19)
H16A0.16460.90670.12150.023*
C170.03892 (11)0.88778 (4)0.29753 (11)0.01678 (18)
C180.00961 (10)0.90076 (4)0.45039 (11)0.01475 (17)
C190.82791 (13)0.69680 (6)0.24429 (17)0.0318 (3)
H19A0.86430.66390.19970.048*
H19B0.89560.70940.32180.048*
H19C0.81150.72670.17450.048*
C200.49521 (14)0.62163 (6)0.48972 (18)0.0333 (3)
H20A0.47250.58260.46740.050*
H20B0.45600.63220.57630.050*
H20C0.59650.62620.50310.050*
C210.39362 (12)0.91653 (5)0.49091 (15)0.0257 (2)
H21A0.31140.94060.48780.039*
H21B0.44590.92540.41150.039*
H21C0.45280.92270.57960.039*
C220.15479 (13)0.93845 (5)0.97486 (12)0.0238 (2)
H22A0.14520.95201.07010.036*
H22B0.23620.95590.94010.036*
H22C0.16670.89780.97700.036*
C230.29354 (12)0.96294 (5)0.77235 (14)0.0259 (2)
H23A0.36980.98870.78530.039*
H23B0.25150.94980.86450.039*
H23C0.32970.93100.71560.039*
C240.04626 (13)0.84603 (5)0.22071 (12)0.0231 (2)
H24A0.01040.84480.12070.035*
H24B0.03890.80890.26220.035*
H24C0.14400.85770.23010.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0195 (4)0.0190 (4)0.0486 (6)0.0025 (3)0.0146 (4)0.0069 (4)
O20.0185 (4)0.0128 (3)0.0376 (5)0.0003 (3)0.0030 (3)0.0021 (3)
O30.0148 (3)0.0137 (3)0.0323 (4)0.0002 (3)0.0084 (3)0.0006 (3)
O40.0187 (4)0.0191 (4)0.0394 (5)0.0007 (3)0.0131 (3)0.0040 (3)
O50.0217 (4)0.0293 (4)0.0165 (4)0.0057 (3)0.0015 (3)0.0044 (3)
O60.0202 (4)0.0194 (3)0.0224 (4)0.0060 (3)0.0074 (3)0.0010 (3)
O70.0160 (3)0.0176 (3)0.0196 (4)0.0032 (3)0.0009 (3)0.0009 (3)
O80.0217 (4)0.0313 (4)0.0257 (4)0.0055 (3)0.0034 (3)0.0020 (3)
C10.0160 (4)0.0151 (4)0.0225 (5)0.0022 (3)0.0059 (4)0.0022 (3)
C20.0130 (4)0.0153 (4)0.0234 (5)0.0004 (3)0.0045 (4)0.0005 (3)
C30.0156 (4)0.0136 (4)0.0283 (5)0.0003 (3)0.0039 (4)0.0018 (4)
C40.0172 (5)0.0167 (4)0.0326 (6)0.0026 (3)0.0078 (4)0.0031 (4)
C50.0171 (5)0.0187 (5)0.0485 (7)0.0010 (4)0.0136 (5)0.0040 (5)
C60.0175 (5)0.0156 (4)0.0428 (7)0.0013 (4)0.0106 (5)0.0032 (4)
C70.0147 (4)0.0138 (4)0.0263 (5)0.0005 (3)0.0057 (4)0.0005 (3)
C80.0151 (4)0.0137 (4)0.0220 (5)0.0010 (3)0.0030 (4)0.0002 (3)
C90.0154 (4)0.0139 (4)0.0184 (4)0.0017 (3)0.0041 (3)0.0004 (3)
C100.0148 (4)0.0137 (4)0.0185 (4)0.0010 (3)0.0044 (3)0.0007 (3)
C110.0156 (4)0.0187 (4)0.0176 (4)0.0030 (3)0.0022 (3)0.0003 (3)
C120.0172 (4)0.0179 (4)0.0161 (4)0.0009 (3)0.0031 (3)0.0010 (3)
C130.0165 (4)0.0153 (4)0.0181 (4)0.0029 (3)0.0047 (3)0.0006 (3)
C140.0132 (4)0.0143 (4)0.0176 (4)0.0009 (3)0.0019 (3)0.0012 (3)
C150.0184 (5)0.0194 (4)0.0194 (5)0.0014 (3)0.0007 (4)0.0014 (4)
C160.0205 (5)0.0215 (5)0.0167 (4)0.0011 (4)0.0020 (4)0.0004 (4)
C170.0181 (4)0.0156 (4)0.0173 (4)0.0018 (3)0.0049 (3)0.0005 (3)
C180.0152 (4)0.0132 (4)0.0165 (4)0.0004 (3)0.0043 (3)0.0004 (3)
C190.0205 (5)0.0279 (6)0.0496 (8)0.0011 (4)0.0157 (5)0.0096 (5)
C200.0235 (6)0.0236 (5)0.0527 (8)0.0009 (4)0.0034 (5)0.0119 (5)
C210.0184 (5)0.0143 (4)0.0451 (7)0.0001 (4)0.0063 (5)0.0029 (4)
C220.0240 (5)0.0293 (5)0.0176 (5)0.0024 (4)0.0006 (4)0.0004 (4)
C230.0184 (5)0.0284 (5)0.0322 (6)0.0002 (4)0.0078 (4)0.0034 (5)
C240.0285 (6)0.0238 (5)0.0178 (5)0.0052 (4)0.0057 (4)0.0028 (4)
Geometric parameters (Å, º) top
O1—C41.3548 (13)C11—C121.3988 (14)
O1—C191.4386 (15)C11—H11A0.9300
O2—C31.3733 (12)C12—C131.3939 (14)
O2—C201.4332 (16)C13—C141.3911 (14)
O3—C21.3736 (12)C14—C181.4107 (13)
O3—C11.3798 (12)C15—C161.4421 (15)
O4—C11.2106 (13)C16—C171.3569 (15)
O5—C121.3565 (13)C16—H16A0.9300
O5—C221.4305 (14)C17—C181.4586 (14)
O6—C131.3723 (12)C17—C241.5015 (15)
O6—C231.4419 (14)C19—H19A0.9600
O7—C141.3755 (12)C19—H19B0.9600
O7—C151.3777 (13)C19—H19C0.9600
O8—C151.2108 (13)C20—H20A0.9600
C1—C91.4594 (14)C20—H20B0.9600
C2—C31.3924 (14)C20—H20C0.9600
C2—C71.4023 (14)C21—H21A0.9600
C3—C41.4043 (15)C21—H21B0.9600
C4—C51.3980 (15)C21—H21C0.9600
C5—C61.3822 (15)C22—H22A0.9600
C5—H5A0.9300C22—H22B0.9600
C6—C71.4016 (15)C22—H22C0.9600
C6—H6A0.9300C23—H23A0.9600
C7—C81.4496 (14)C23—H23B0.9600
C8—C91.3605 (14)C23—H23C0.9600
C8—C211.4977 (14)C24—H24A0.9600
C9—C101.4945 (14)C24—H24B0.9600
C10—C111.3906 (14)C24—H24C0.9600
C10—C181.4168 (14)
C4—O1—C19116.67 (9)O8—C15—O7116.93 (10)
C3—O2—C20112.74 (10)O8—C15—C16126.78 (10)
C2—O3—C1121.26 (8)O7—C15—C16116.26 (9)
C12—O5—C22117.03 (9)C17—C16—C15123.69 (10)
C13—O6—C23112.73 (8)C17—C16—H16A118.2
C14—O7—C15121.80 (8)C15—C16—H16A118.2
O4—C1—O3116.55 (9)C16—C17—C18118.98 (9)
O4—C1—C9125.29 (9)C16—C17—C24117.60 (10)
O3—C1—C9118.15 (9)C18—C17—C24123.41 (9)
O3—C2—C3116.39 (9)C14—C18—C10116.55 (9)
O3—C2—C7121.30 (9)C14—C18—C17116.36 (9)
C3—C2—C7122.30 (9)C10—C18—C17127.08 (9)
O2—C3—C2120.39 (9)O1—C19—H19A109.5
O2—C3—C4120.81 (9)O1—C19—H19B109.5
C2—C3—C4118.76 (9)H19A—C19—H19B109.5
O1—C4—C5124.40 (10)O1—C19—H19C109.5
O1—C4—C3115.77 (10)H19A—C19—H19C109.5
C5—C4—C3119.82 (10)H19B—C19—H19C109.5
C6—C5—C4120.12 (10)O2—C20—H20A109.5
C6—C5—H5A119.9O2—C20—H20B109.5
C4—C5—H5A119.9H20A—C20—H20B109.5
C5—C6—C7121.60 (10)O2—C20—H20C109.5
C5—C6—H6A119.2H20A—C20—H20C109.5
C7—C6—H6A119.2H20B—C20—H20C109.5
C6—C7—C2117.31 (9)C8—C21—H21A109.5
C6—C7—C8123.73 (9)C8—C21—H21B109.5
C2—C7—C8118.93 (9)H21A—C21—H21B109.5
C9—C8—C7118.78 (9)C8—C21—H21C109.5
C9—C8—C21121.61 (9)H21A—C21—H21C109.5
C7—C8—C21119.58 (9)H21B—C21—H21C109.5
C8—C9—C1121.36 (9)O5—C22—H22A109.5
C8—C9—C10122.93 (9)O5—C22—H22B109.5
C1—C9—C10115.60 (9)H22A—C22—H22B109.5
C11—C10—C18120.57 (9)O5—C22—H22C109.5
C11—C10—C9115.52 (9)H22A—C22—H22C109.5
C18—C10—C9123.91 (9)H22B—C22—H22C109.5
C10—C11—C12121.19 (9)O6—C23—H23A109.5
C10—C11—H11A119.4O6—C23—H23B109.5
C12—C11—H11A119.4H23A—C23—H23B109.5
O5—C12—C13115.33 (9)O6—C23—H23C109.5
O5—C12—C11125.00 (9)H23A—C23—H23C109.5
C13—C12—C11119.63 (9)H23B—C23—H23C109.5
O6—C13—C14119.86 (9)C17—C24—H24A109.5
O6—C13—C12121.34 (9)C17—C24—H24B109.5
C14—C13—C12118.79 (9)H24A—C24—H24B109.5
O7—C14—C13114.02 (8)C17—C24—H24C109.5
O7—C14—C18122.74 (9)H24A—C24—H24C109.5
C13—C14—C18123.23 (9)H24B—C24—H24C109.5
C2—O3—C1—O4178.16 (10)C8—C9—C10—C18103.55 (13)
C2—O3—C1—C90.94 (15)C1—C9—C10—C1880.20 (12)
C1—O3—C2—C3175.74 (10)C18—C10—C11—C121.57 (15)
C1—O3—C2—C74.15 (16)C9—C10—C11—C12178.01 (9)
C20—O2—C3—C2103.96 (12)C22—O5—C12—C13173.06 (9)
C20—O2—C3—C478.36 (14)C22—O5—C12—C119.01 (16)
O3—C2—C3—O21.16 (16)C10—C11—C12—O5177.12 (10)
C7—C2—C3—O2178.72 (10)C10—C11—C12—C130.73 (16)
O3—C2—C3—C4178.89 (10)C23—O6—C13—C1499.08 (11)
C7—C2—C3—C41.00 (17)C23—O6—C13—C1281.83 (12)
C19—O1—C4—C57.65 (19)O5—C12—C13—O62.19 (15)
C19—O1—C4—C3172.97 (11)C11—C12—C13—O6179.76 (9)
O2—C3—C4—O10.06 (17)O5—C12—C13—C14178.71 (9)
C2—C3—C4—O1177.65 (10)C11—C12—C13—C140.66 (15)
O2—C3—C4—C5179.34 (11)C15—O7—C14—C13176.70 (9)
C2—C3—C4—C52.94 (18)C15—O7—C14—C184.07 (14)
O1—C4—C5—C6178.29 (13)O6—C13—C14—O70.41 (14)
C3—C4—C5—C62.4 (2)C12—C13—C14—O7179.52 (9)
C4—C5—C6—C70.2 (2)O6—C13—C14—C18179.63 (9)
C5—C6—C7—C22.14 (19)C12—C13—C14—C181.25 (15)
C5—C6—C7—C8175.98 (12)C14—O7—C15—O8179.20 (9)
O3—C2—C7—C6178.61 (11)C14—O7—C15—C162.60 (14)
C3—C2—C7—C61.51 (17)O8—C15—C16—C17176.66 (11)
O3—C2—C7—C83.18 (16)O7—C15—C16—C171.34 (16)
C3—C2—C7—C8176.71 (10)C15—C16—C17—C183.75 (16)
C6—C7—C8—C9177.07 (11)C15—C16—C17—C24174.94 (10)
C2—C7—C8—C91.03 (16)O7—C14—C18—C10179.60 (9)
C6—C7—C8—C210.87 (18)C13—C14—C18—C100.43 (14)
C2—C7—C8—C21178.97 (11)O7—C14—C18—C171.53 (14)
C7—C8—C9—C14.21 (16)C13—C14—C18—C17179.31 (9)
C21—C8—C9—C1177.89 (11)C11—C10—C18—C140.98 (14)
C7—C8—C9—C10179.74 (10)C9—C10—C18—C14178.57 (9)
C21—C8—C9—C101.85 (17)C11—C10—C18—C17177.76 (10)
O4—C1—C9—C8177.67 (11)C9—C10—C18—C172.69 (16)
O3—C1—C9—C83.33 (15)C16—C17—C18—C142.26 (14)
O4—C1—C9—C101.35 (16)C24—C17—C18—C14176.35 (9)
O3—C1—C9—C10179.65 (9)C16—C17—C18—C10176.47 (10)
C8—C9—C10—C1176.88 (13)C24—C17—C18—C104.91 (16)
C1—C9—C10—C1199.37 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O6i0.962.553.2921 (15)134
C22—H22A···O6ii0.962.523.4385 (14)161
C22—H22B···O8i0.962.563.4401 (15)152
C6—H6A···Cg1iii0.932.923.6706 (12)138
C19—H19A···Cg2iv0.962.603.5446 (14)170
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2; (iii) x+1, y, z; (iv) x+1, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC24H22O8
Mr438.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4724 (1), 23.4766 (3), 9.3525 (1)
β (°) 96.254 (1)
V3)2067.43 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.27 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
58385, 7006, 6023
Rint0.030
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.07
No. of reflections7006
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O6i0.962.553.2921 (15)134
C22—H22A···O6ii0.962.523.4385 (14)161
C22—H22B···O8i0.962.563.4401 (15)152
C6—H6A···Cg1iii0.932.923.6706 (12)138
C19—H19A···Cg2iv0.962.603.5446 (14)170
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2; (iii) x+1, y, z; (iv) x+1, y+1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145–151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527.  Web of Science CrossRef CAS Google Scholar
First citationEl-Farargy, A. F. (1991). Egypt. J. Pharm. Sci. 32, 625–625.  CAS Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.  CrossRef CAS Google Scholar
First citationGhate, M., Kusanur, R. A. & Kulkarni, M. V. (2005). Eur. J. Med. Chem. 40, 882–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKennedy, R. O. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. New York: Wiley & Sons.  Google Scholar
First citationLaakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod. 57, 128–133.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99–113.  Web of Science CrossRef CAS Google Scholar
First citationPratibha, S. & Shreeya, P. (1999). Indian J. Chem. Sect. B, 38, 1139–1142.  Google Scholar
First citationShaker, R. M. (1996). Pharmazie, 51, 148–148.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1322-o1323
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds