organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(6-Quinolyl­oxymeth­yl)benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyhnju@hotmail.com

(Received 2 April 2009; accepted 4 May 2009; online 14 May 2009)

The title compound, C17H12N2O, was synthesized by an ether synthesis from quinolin-6-ol and 4-(bromo­meth­yl)benzonitrile. The phenyl ring of the benzonitrile group makes a dihedral angle of 47.52 (6)° with the plane of the quinoline fragment. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions between a benzene H atom of the benzonitrile group and the benzene ring of the quinoline fragment. In addition, the crystal structure also exhibits a weak inter­molecular C—H⋯N hydrogen bond.

Related literature

For general background to nitrile compounds, see: Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]); Brewis et al. (2003[Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863-3872.]). For related structures, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Zhao (2008[Zhao, Y.-Y. (2008). Acta Cryst. E64, o761.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O

  • Mr = 260.29

  • Monoclinic, P 21 /n

  • a = 9.466 (2) Å

  • b = 13.078 (3) Å

  • c = 10.857 (2) Å

  • β = 90.81 (3)°

  • V = 1343.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.981

  • 12007 measured reflections

  • 2622 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.120

  • S = 1.06

  • 2622 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cgi 0.93 2.83 3.613 (2) 142
C13—H13⋯N1ii 0.93 2.60 3.398 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z. Cg is the centroid of the C1–C4/C8/C9 benzene ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The synthesis of new azoles has been a very active area of research and one important aspect has been the incorporation of functional units. Nitrile derivatives have found many industrial applications. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (PDT; Brewis et al., 2003). Recently, we have reported a few benzonitrile compounds (Fu & Zhao, 2007; Zhao, 2008). As an extension of our work on the structural characterization, Here we present the synthesis and crystal structure of the title compound 4-[(quinolin-6-yloxy)methyl]benzonitrile (Fig. 1).

The phenyl ring (C11–C16) make a dihedral angle of 47.44 (1)° with the plane of the quinoline fragment. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between the benzene H atom of benzonitrile group and the benzene ring of the quinoline fragment from an adjacent molecule, with a C12—H12···Cgi separation of 2.83 Å (Fig. 2 and Table 1; Cg is the centroid of the C1–C4/C8/C9 benzene ring, symmetry code as in Fig. 2). Additionally, a weak intermolecular C—H···N hydrogen bond in the structure is observed (Fig. 2 and Table 1).

Related literature top

For general background on nitrile compounds, see: Jin et al. (1994); Brewis et al. (2003). For related structures, see: Fu & Zhao (2007); Zhao (2008).Cg is the centroid of the C1–C4/C8/C9 benzene ring

Experimental top

Quinolin-6-ol (1 g, 0.0069 mol) was added to a solution of sodium hydroxide (0.276 g, 0.0069 mol) in 15 ml of methanol and stirred for one hour. Then 4-(bromomethyl)benzonitrile (1.352 g, 0.0069 mol) was added to the above solution. The mixture was stirred at room temperature for 1 d. The title compound was isolated using column chromatography (petroleum ether:ethyl acetate = 2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate and tetrahydrofuran solution.

Refinement top

All the C—H H atoms were calculated geometrically and with C—H distances ranging from 0.93 to 0.97 Å and were allowed to ride on the C and O atoms to which they are bonded. With which Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) -x + 1/2, y - 1/2, -z + 1/2.]
4-(6-Quinolyloxymethyl)benzonitrile top
Crystal data top
C17H12N2OF(000) = 544
Mr = 260.29Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10916 reflections
a = 9.466 (2) Åθ = 6.2–55.5°
b = 13.078 (3) ŵ = 0.08 mm1
c = 10.857 (2) ÅT = 293 K
β = 90.81 (3)°Prism, colourless
V = 1343.9 (5) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2622 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.976, Tmax = 0.981l = 1313
12007 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1913P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2622 reflectionsΔρmax = 0.15 e Å3
182 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (4)
Crystal data top
C17H12N2OV = 1343.9 (5) Å3
Mr = 260.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.466 (2) ŵ = 0.08 mm1
b = 13.078 (3) ÅT = 293 K
c = 10.857 (2) Å0.30 × 0.26 × 0.24 mm
β = 90.81 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2622 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1956 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.054
12007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2622 reflectionsΔρmin = 0.13 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48772 (13)0.46617 (8)0.29375 (10)0.0598 (4)
N10.40388 (17)0.05815 (11)0.18437 (15)0.0620 (4)
N20.7214 (2)0.99565 (14)0.44097 (18)0.0841 (6)
C10.46122 (17)0.36816 (12)0.25614 (16)0.0484 (4)
C20.49253 (18)0.29346 (13)0.34606 (16)0.0538 (5)
H20.52510.31340.42360.065*
C30.47550 (19)0.19262 (13)0.32018 (16)0.0547 (5)
H30.49840.14410.37980.066*
C40.42364 (17)0.16054 (12)0.20416 (16)0.0478 (4)
C50.3504 (2)0.03171 (15)0.07708 (19)0.0701 (6)
H50.33560.03760.06240.084*
C60.3139 (2)0.10024 (15)0.01687 (19)0.0691 (6)
H60.27640.07650.09120.083*
C70.33370 (19)0.20151 (13)0.00168 (16)0.0570 (5)
H70.31030.24820.05990.068*
C80.39011 (16)0.23550 (12)0.11523 (15)0.0451 (4)
C90.40997 (17)0.34014 (12)0.14319 (15)0.0474 (4)
H90.38810.38980.08460.057*
C100.45964 (19)0.54615 (12)0.20742 (16)0.0526 (4)
H10A0.35880.55170.19180.063*
H10B0.50560.53160.13010.063*
C110.51542 (17)0.64433 (12)0.26109 (15)0.0478 (4)
C120.43628 (18)0.73295 (12)0.25445 (17)0.0531 (5)
H120.34660.73100.21850.064*
C130.48752 (18)0.82412 (13)0.30002 (17)0.0552 (5)
H130.43300.88310.29480.066*
C140.62108 (18)0.82714 (12)0.35366 (15)0.0494 (4)
C150.70261 (19)0.73897 (13)0.35993 (17)0.0576 (5)
H150.79270.74100.39510.069*
C160.64942 (19)0.64883 (13)0.31393 (17)0.0574 (5)
H160.70420.58990.31830.069*
C170.6764 (2)0.92132 (15)0.40205 (17)0.0607 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0811 (9)0.0411 (7)0.0567 (8)0.0085 (6)0.0115 (6)0.0033 (5)
N10.0743 (11)0.0411 (9)0.0705 (11)0.0007 (7)0.0028 (8)0.0007 (7)
N20.0966 (13)0.0606 (11)0.0946 (13)0.0189 (10)0.0163 (10)0.0113 (10)
C10.0489 (9)0.0409 (9)0.0551 (10)0.0042 (7)0.0015 (8)0.0030 (8)
C20.0596 (11)0.0524 (11)0.0494 (10)0.0030 (8)0.0063 (8)0.0048 (8)
C30.0610 (11)0.0479 (11)0.0553 (11)0.0019 (8)0.0030 (8)0.0128 (8)
C40.0455 (9)0.0412 (10)0.0569 (11)0.0011 (7)0.0043 (8)0.0037 (8)
C50.0847 (15)0.0449 (11)0.0808 (15)0.0049 (9)0.0041 (11)0.0085 (10)
C60.0842 (14)0.0584 (12)0.0646 (12)0.0103 (10)0.0065 (10)0.0105 (10)
C70.0635 (12)0.0526 (11)0.0546 (11)0.0049 (8)0.0053 (9)0.0016 (8)
C80.0396 (9)0.0439 (9)0.0516 (10)0.0019 (7)0.0007 (7)0.0025 (7)
C90.0502 (10)0.0433 (9)0.0485 (10)0.0011 (7)0.0052 (7)0.0089 (7)
C100.0589 (11)0.0427 (10)0.0562 (11)0.0010 (8)0.0035 (8)0.0040 (8)
C110.0489 (10)0.0431 (10)0.0514 (10)0.0033 (7)0.0032 (7)0.0030 (7)
C120.0439 (10)0.0472 (10)0.0681 (12)0.0011 (7)0.0023 (8)0.0004 (8)
C130.0534 (11)0.0418 (10)0.0706 (12)0.0031 (8)0.0033 (9)0.0025 (8)
C140.0543 (11)0.0434 (9)0.0506 (10)0.0084 (7)0.0036 (8)0.0015 (7)
C150.0499 (10)0.0553 (11)0.0673 (12)0.0016 (8)0.0093 (9)0.0009 (9)
C160.0559 (11)0.0442 (10)0.0718 (12)0.0069 (8)0.0075 (9)0.0004 (8)
C170.0664 (12)0.0532 (11)0.0626 (12)0.0073 (9)0.0030 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1—C11.3674 (19)C7—H70.9300
O1—C101.4269 (19)C8—C91.414 (2)
N1—C51.310 (2)C9—H90.9300
N1—C41.369 (2)C10—C111.503 (2)
N2—C171.140 (2)C10—H10A0.9700
C1—C91.363 (2)C10—H10B0.9700
C1—C21.410 (2)C11—C121.381 (2)
C2—C31.358 (2)C11—C161.386 (2)
C2—H20.9300C12—C131.377 (2)
C3—C41.409 (2)C12—H120.9300
C3—H30.9300C13—C141.385 (2)
C4—C81.409 (2)C13—H130.9300
C5—C61.398 (3)C14—C151.389 (2)
C5—H50.9300C14—C171.435 (2)
C6—C71.352 (3)C15—C161.373 (2)
C6—H60.9300C15—H150.9300
C7—C81.408 (2)C16—H160.9300
C1—O1—C10117.34 (12)C1—C9—H9120.1
C5—N1—C4116.62 (16)C8—C9—H9120.1
C9—C1—O1125.61 (15)O1—C10—C11108.09 (13)
C9—C1—C2120.38 (15)O1—C10—H10A110.1
O1—C1—C2114.01 (14)C11—C10—H10A110.1
C3—C2—C1120.44 (16)O1—C10—H10B110.1
C3—C2—H2119.8C11—C10—H10B110.1
C1—C2—H2119.8H10A—C10—H10B108.4
C2—C3—C4120.86 (16)C12—C11—C16118.59 (15)
C2—C3—H3119.6C12—C11—C10120.62 (15)
C4—C3—H3119.6C16—C11—C10120.74 (15)
N1—C4—C8122.97 (16)C13—C12—C11121.32 (16)
N1—C4—C3118.47 (15)C13—C12—H12119.3
C8—C4—C3118.53 (15)C11—C12—H12119.3
N1—C5—C6124.62 (18)C12—C13—C14119.39 (16)
N1—C5—H5117.7C12—C13—H13120.3
C6—C5—H5117.7C14—C13—H13120.3
C7—C6—C5119.14 (18)C13—C14—C15120.02 (15)
C7—C6—H6120.4C13—C14—C17120.32 (16)
C5—C6—H6120.4C15—C14—C17119.67 (16)
C6—C7—C8119.31 (17)C16—C15—C14119.63 (16)
C6—C7—H7120.3C16—C15—H15120.2
C8—C7—H7120.3C14—C15—H15120.2
C7—C8—C4117.33 (15)C15—C16—C11121.04 (16)
C7—C8—C9122.75 (15)C15—C16—H16119.5
C4—C8—C9119.89 (15)C11—C16—H16119.5
C1—C9—C8119.88 (15)N2—C17—C14179.4 (2)
C10—O1—C1—C90.1 (2)O1—C1—C9—C8178.66 (15)
C10—O1—C1—C2179.55 (14)C2—C1—C9—C81.0 (2)
C9—C1—C2—C31.7 (3)C7—C8—C9—C1178.09 (16)
O1—C1—C2—C3177.98 (16)C4—C8—C9—C10.1 (2)
C1—C2—C3—C41.3 (3)C1—O1—C10—C11171.97 (14)
C5—N1—C4—C80.4 (3)O1—C10—C11—C12135.85 (16)
C5—N1—C4—C3177.42 (17)O1—C10—C11—C1646.7 (2)
C2—C3—C4—N1177.77 (16)C16—C11—C12—C130.6 (3)
C2—C3—C4—C80.2 (3)C10—C11—C12—C13178.12 (16)
C4—N1—C5—C60.5 (3)C11—C12—C13—C140.0 (3)
N1—C5—C6—C70.1 (3)C12—C13—C14—C150.7 (3)
C5—C6—C7—C80.2 (3)C12—C13—C14—C17179.84 (16)
C6—C7—C8—C40.3 (2)C13—C14—C15—C160.7 (3)
C6—C7—C8—C9178.00 (17)C17—C14—C15—C16179.81 (17)
N1—C4—C8—C70.1 (2)C14—C15—C16—C110.1 (3)
C3—C4—C8—C7177.76 (16)C12—C11—C16—C150.6 (3)
N1—C4—C8—C9178.39 (15)C10—C11—C16—C15178.10 (16)
C3—C4—C8—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.833.613 (2)142
C13—H13···N1ii0.932.603.398 (2)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H12N2O
Mr260.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.466 (2), 13.078 (3), 10.857 (2)
β (°) 90.81 (3)
V3)1343.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12007, 2622, 1956
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.120, 1.06
No. of reflections2622
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.833.613 (2)142.4
C13—H13···N1ii0.932.603.398 (2)144.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by a Start-up Grant (No. 4007041028) and a Science Technology Grant (No. KJ2009375) from Southeast University to YHL.

References

First citationBrewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y.-Y. (2008). Acta Cryst. E64, o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds