organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-(2-Pyrrolidinio)-1H-benzimidazol-3-ium dichloride monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 3 April 2009; accepted 20 May 2009; online 23 May 2009)

In the title compound, C11H15N32+·2Cl·H2O, one N atom of the imidazole ring and the N atom of the pyrrolidine ring are protonated. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring benzimidazole systems [centroid–centroid duistance = 3.712 (2) Å]. The crystal structure is further stabilized by inter­molecular N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For proline derivatives, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]). For related structures, see: Dai & Fu (2008a[Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.],b[Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.]); Fu & Ye (2007[Fu, D.-W. & Ye, H.-Y. (2007). Acta Cryst. E63, m2453.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N32+·2Cl·H2O

  • Mr = 278.18

  • Triclinic, [P \overline 1]

  • a = 7.493 (2) Å

  • b = 9.739 (2) Å

  • c = 9.937 (2) Å

  • α = 99.23 (3)°

  • β = 95.73 (3)°

  • γ = 106.27 (3)°

  • V = 679.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.982 (expected range = 0.911–0.932)

  • 7119 measured reflections

  • 3108 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.120

  • S = 1.08

  • 3108 reflections

  • 162 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.17 3.018 (2) 169
N2—H2A⋯Cl1i 0.86 2.18 3.021 (2) 166
N3—H3A⋯Cl2ii 0.90 2.20 3.058 (2) 158
N3—H3B⋯O1W 0.90 1.80 2.656 (3) 159
O1W—H1A⋯Cl1iii 0.85 (3) 2.22 (3) 3.069 (3) 174 (4)
O1W—H1B⋯Cl2iv 0.84 (3) 2.37 (4) 3.181 (2) 161 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z-1; (iii) x, y+1, z; (iv) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Amino acid derivatives provide wide applications in the field of material science, such as ferroelectric, fluorescence and dielectric behaviors. Also,there have been much attention in the preparation of amino acid coordination compound. (Aminabhavi et al., 1986; Dai & Fu 2008a,b; Fu & Ye 2007; Fu, et al. 2007). Here we report the crystal structure of the title compound, (S)-2-(pyrrolidinium-2-yl)-1H-benzimidazol-3-ium dichloride monohydrate (Fig. 1).

The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene rings of the neighbouring benzimidazole systems. The Cg···Cgi distance is 3.712 (2) Å (Cg is the centroide of the C1—C6 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular N—H···Cl, O—H···Cl and N—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For proline derivatives, see: Fu et al. (2007); Aminabhavi et al. (1986); Dai & Fu (2008a,b); Fu & Ye (2007).

Experimental top

The homochiral ligand (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole was synthesized by reaction of S-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature(Aminabhavi, et al.(1986)). Then (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole (3 mmol) was dissolved in the solution of distilled water (20 ml) and hydrochloric acid (1 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) and N—H = 0.90 Å (N3), 0.86 Å (N1, N2) and O—H = 0.85 Å with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O). The distances of O1W—H were restrained to 0.85 (1) Å using command DFIX.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The ππ, N—H···Cl, O—H···Cl and N—H···O interactions (dotted line) in the title compound. Cg denotes the ring centroid of the C1-C6 benzene ring. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z-1; (iii) x, y+1, z; (iv) x, y, z-1; (v) -x, -y+1, -z; (vi) x+1, -y+2, -z+1; (vii) x, y-1, z; (viii) x, y, z+1; (ix) -x+1, -y+1, -z.]
(S)-2-(2-Pyrrolidinio)-1H-benzimidazol-3-ium dichloride monohydrate top
Crystal data top
C11H15N32+·2Cl·H2OZ = 2
Mr = 278.18F(000) = 292
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.493 (2) ÅCell parameters from 3108 reflections
b = 9.739 (2) Åθ = 3.1–27.5°
c = 9.937 (2) ŵ = 0.47 mm1
α = 99.23 (3)°T = 293 K
β = 95.73 (3)°Block, colorless
γ = 106.27 (3)°0.35 × 0.30 × 0.15 mm
V = 679.0 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
3108 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.959, Tmax = 0.982l = 1212
7119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.3615P]
where P = (Fo2 + 2Fc2)/3
3108 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H15N32+·2Cl·H2Oγ = 106.27 (3)°
Mr = 278.18V = 679.0 (3) Å3
Triclinic, P1Z = 2
a = 7.493 (2) ÅMo Kα radiation
b = 9.739 (2) ŵ = 0.47 mm1
c = 9.937 (2) ÅT = 293 K
α = 99.23 (3)°0.35 × 0.30 × 0.15 mm
β = 95.73 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3108 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2310 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.982Rint = 0.037
7119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
3108 reflectionsΔρmin = 0.24 e Å3
162 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81735 (10)0.00616 (8)0.30163 (7)0.0600 (2)
Cl20.79242 (9)0.58762 (8)0.97152 (7)0.0597 (2)
N10.2136 (3)0.5855 (2)0.31035 (18)0.0390 (4)
H10.20580.54450.22570.047*
N20.2230 (3)0.7465 (2)0.48963 (18)0.0414 (5)
H2A0.22240.82690.54000.050*
N30.1820 (3)0.7775 (2)0.11964 (19)0.0425 (5)
H3A0.08230.70240.07590.051*
H3B0.28750.75180.11230.051*
C10.2450 (3)0.6267 (3)0.5381 (2)0.0405 (5)
C20.2697 (4)0.5979 (3)0.6704 (3)0.0573 (7)
H20.27380.66660.74830.069*
C30.2877 (4)0.4640 (4)0.6804 (3)0.0662 (8)
H30.30580.44190.76740.079*
C40.2798 (4)0.3597 (3)0.5650 (3)0.0628 (8)
H40.29190.26970.57660.075*
C50.2546 (4)0.3866 (3)0.4338 (3)0.0537 (6)
H50.24810.31690.35620.064*
C60.2394 (3)0.5228 (2)0.4234 (2)0.0379 (5)
C70.2029 (3)0.7186 (2)0.3528 (2)0.0364 (5)
C80.1637 (3)0.8211 (3)0.2668 (2)0.0409 (5)
H80.03410.82250.27090.049*
C90.2916 (4)0.9767 (3)0.3080 (3)0.0529 (6)
H9A0.41850.97930.34260.063*
H9B0.24541.03270.37860.063*
C100.2868 (6)1.0359 (3)0.1762 (3)0.0755 (9)
H10A0.21911.10770.18220.091*
H10B0.41371.08220.16090.091*
C110.1905 (5)0.9111 (3)0.0618 (3)0.0666 (8)
H11A0.26060.91350.01520.080*
H11B0.06480.91340.03020.080*
O1W0.5254 (3)0.7671 (3)0.0856 (3)0.0863 (8)
H1A0.613 (4)0.832 (3)0.142 (3)0.117 (16)*
H1B0.572 (5)0.707 (3)0.043 (3)0.102 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (5)0.0589 (4)0.0530 (4)0.0339 (4)0.0092 (3)0.0076 (3)
Cl20.0536 (4)0.0722 (5)0.0447 (4)0.0234 (3)0.0033 (3)0.0186 (3)
N10.0487 (11)0.0378 (10)0.0303 (9)0.0166 (9)0.0067 (8)0.0010 (7)
N20.0501 (11)0.0408 (11)0.0331 (10)0.0182 (9)0.0101 (8)0.0037 (8)
N30.0439 (11)0.0448 (11)0.0382 (10)0.0161 (9)0.0007 (8)0.0050 (8)
C10.0378 (12)0.0459 (13)0.0378 (12)0.0124 (10)0.0106 (9)0.0056 (10)
C20.0588 (16)0.0740 (19)0.0380 (13)0.0176 (14)0.0137 (12)0.0085 (13)
C30.0662 (19)0.086 (2)0.0546 (17)0.0220 (17)0.0159 (14)0.0355 (16)
C40.0642 (18)0.0557 (17)0.077 (2)0.0197 (14)0.0146 (15)0.0316 (15)
C50.0593 (16)0.0436 (14)0.0600 (17)0.0172 (12)0.0119 (13)0.0104 (12)
C60.0380 (12)0.0374 (12)0.0381 (12)0.0111 (10)0.0082 (9)0.0052 (9)
C70.0357 (11)0.0376 (12)0.0350 (11)0.0123 (9)0.0076 (9)0.0010 (9)
C80.0392 (12)0.0445 (13)0.0420 (13)0.0197 (10)0.0086 (10)0.0031 (10)
C90.0599 (16)0.0413 (14)0.0550 (16)0.0156 (12)0.0086 (13)0.0021 (11)
C100.110 (3)0.0456 (16)0.069 (2)0.0160 (17)0.0164 (18)0.0150 (14)
C110.092 (2)0.0606 (18)0.0564 (18)0.0338 (17)0.0045 (16)0.0239 (14)
O1W0.0539 (13)0.0682 (15)0.125 (2)0.0221 (12)0.0145 (14)0.0227 (14)
Geometric parameters (Å, º) top
N1—C71.324 (3)C4—H40.9300
N1—C61.384 (3)C5—C61.381 (3)
N1—H10.8600C5—H50.9300
N2—C71.327 (3)C7—C81.484 (3)
N2—C11.376 (3)C8—C91.514 (3)
N2—H2A0.8600C8—H80.9800
N3—C81.487 (3)C9—C101.514 (4)
N3—C111.492 (3)C9—H9A0.9700
N3—H3A0.9000C9—H9B0.9700
N3—H3B0.9000C10—C111.481 (4)
C1—C61.386 (3)C10—H10A0.9700
C1—C21.393 (3)C10—H10B0.9700
C2—C31.366 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.389 (4)O1W—H1A0.85 (3)
C3—H30.9300O1W—H1B0.84 (3)
C4—C51.375 (4)
C7—N1—C6109.38 (18)N1—C6—C1105.90 (19)
C7—N1—H1125.3N1—C7—N2108.91 (19)
C6—N1—H1125.3N1—C7—C8127.69 (19)
C7—N2—C1109.25 (18)N2—C7—C8123.30 (19)
C7—N2—H2A125.4C7—C8—N3112.88 (18)
C1—N2—H2A125.4C7—C8—C9115.7 (2)
C8—N3—C11104.06 (19)N3—C8—C9103.78 (19)
C8—N3—H3A110.9C7—C8—H8108.1
C11—N3—H3A110.9N3—C8—H8108.1
C8—N3—H3B110.9C9—C8—H8108.1
C11—N3—H3B110.9C8—C9—C10104.4 (2)
H3A—N3—H3B109.0C8—C9—H9A110.9
N2—C1—C6106.55 (19)C10—C9—H9A110.9
N2—C1—C2132.8 (2)C8—C9—H9B110.9
C6—C1—C2120.7 (2)C10—C9—H9B110.9
C3—C2—C1116.9 (3)H9A—C9—H9B108.9
C3—C2—H2121.6C11—C10—C9107.4 (2)
C1—C2—H2121.6C11—C10—H10A110.2
C2—C3—C4122.2 (3)C9—C10—H10A110.2
C2—C3—H3118.9C11—C10—H10B110.2
C4—C3—H3118.9C9—C10—H10B110.2
C5—C4—C3121.5 (3)H10A—C10—H10B108.5
C5—C4—H4119.3C10—C11—N3105.7 (2)
C3—C4—H4119.3C10—C11—H11A110.6
C4—C5—C6116.5 (3)N3—C11—H11A110.6
C4—C5—H5121.8C10—C11—H11B110.6
C6—C5—H5121.8N3—C11—H11B110.6
C5—C6—N1131.8 (2)H11A—C11—H11B108.7
C5—C6—C1122.3 (2)H1A—O1W—H1B109 (4)
C7—N2—C1—C60.6 (2)C6—N1—C7—N20.8 (2)
C7—N2—C1—C2179.6 (3)C6—N1—C7—C8175.7 (2)
N2—C1—C2—C3179.8 (3)C1—N2—C7—N10.9 (3)
C6—C1—C2—C30.0 (4)C1—N2—C7—C8175.8 (2)
C1—C2—C3—C40.7 (4)N1—C7—C8—N314.5 (3)
C2—C3—C4—C50.4 (5)N2—C7—C8—N3169.4 (2)
C3—C4—C5—C60.6 (4)N1—C7—C8—C9133.8 (2)
C4—C5—C6—N1180.0 (2)N2—C7—C8—C950.1 (3)
C4—C5—C6—C11.3 (4)C11—N3—C8—C7164.9 (2)
C7—N1—C6—C5178.4 (3)C11—N3—C8—C938.9 (2)
C7—N1—C6—C10.4 (2)C7—C8—C9—C10154.4 (2)
N2—C1—C6—C5179.1 (2)N3—C8—C9—C1030.1 (3)
C2—C1—C6—C51.1 (4)C8—C9—C10—C1110.2 (3)
N2—C1—C6—N10.1 (2)C9—C10—C11—N313.5 (4)
C2—C1—C6—N1180.0 (2)C8—N3—C11—C1032.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.173.018 (2)169
N2—H2A···Cl1i0.862.183.021 (2)166
N3—H3A···Cl2ii0.902.203.058 (2)158
N3—H3B···O1W0.901.802.656 (3)159
O1W—H1A···Cl1iii0.85 (3)2.22 (3)3.069 (3)174 (4)
O1W—H1B···Cl2iv0.84 (3)2.37 (4)3.181 (2)161 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z1; (iii) x, y+1, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC11H15N32+·2Cl·H2O
Mr278.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.493 (2), 9.739 (2), 9.937 (2)
α, β, γ (°)99.23 (3), 95.73 (3), 106.27 (3)
V3)679.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.959, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7119, 3108, 2310
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.08
No. of reflections3108
No. of parameters162
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.173.018 (2)169.3
N2—H2A···Cl1i0.862.183.021 (2)165.6
N3—H3A···Cl2ii0.902.203.058 (2)158.2
N3—H3B···O1W0.901.802.656 (3)158.9
O1W—H1A···Cl1iii0.85 (3)2.22 (3)3.069 (3)174 (4)
O1W—H1B···Cl2iv0.84 (3)2.37 (4)3.181 (2)161 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z1; (iii) x, y+1, z; (iv) x, y, z1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Ye, H.-Y. (2007). Acta Cryst. E63, m2453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds