organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­acet­yl)-3-methyl-2,6-bis­­(3,4,5-tri­meth­oxy­phen­yl)piperidine-4-one

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: jsp@physics.uni-mysore.ac.in

(Received 18 April 2009; accepted 28 April 2009; online 7 May 2009)

In the crystal structure of the title compound, C26H32ClNO8, the piperidine ring is in a twist-chair conformation, with puckering parameters Q = 0.655 (4) Å, θ = 93.1 (1) and φ = 254.4 (3)°. The ortho C atoms of the piperidine ring deviate from the plane defined by the remaining ring atoms by 0.380 (3) and −0.250 (3) Å.

Related literature

For the biological and pharmacological properties of piperidines, see: Prostakov & Gaivoronskaya (1978[Prostakov, N. S. & Gaivoronskaya, L. A. (1978). Russ. Chem. Rev. 47, 447—469.]). For the biological activity of piperidones with aryl substituents at the 2 and 6 positions, see: Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. (1965). J. Med. Chem. 8, 619-625.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Baliah et al. (1983[Baliah, V., Jeyaraman, R. & Chandrashekaran, L. (1983). Chem. Rev. 83, 379—423.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32ClNO8

  • Mr = 521.98

  • Orthorhombic, P b c a

  • a = 13.8720 (8) Å

  • b = 16.5110 (11) Å

  • c = 22.8120 (16) Å

  • V = 5224.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • Absorption correction: none

  • 8214 measured reflections

  • 4464 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.05

  • 4464 reflections

  • 332 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Piperidines are an important group of compounds in the field of medicinal chemistry owing to the fact that they can frequently be recognized in the structures of numerous naturally occurring alkaloid and synthetic compounds with interesting biological and pharmacological properties (Prostakov et al., 1978). Furthermore, the significant biological activities of piperridones were associated with aryl substituents at 2 and 6 positions (Ganellin & Spickett, 1965; Mobio et al., 1989). In view of the importance of such compounds the crystal structure of the title compound is reported.

The substituent at C2 is in an equatorial position as indicated by the dihedral angle of 85.18 (2)° between the piperidine and the phenyl ring. The methyl group at C5 reflects C8 and is oriented in an anti-periplanar conformation as indicated by the torsion angle of N1—C6—C5—C8 = -173.25°. The torsion angle of 180.0 (3)° for C6—N1—C9—O10 shows that O10 is also in an anti-periplanar conformation. The methoxy groups at C27, C25, C17 and C15 are nearly planar with the phenyl ring whereas the methoxy group at C26 and C16 is nearly orthogonal to the phenyl rings.

Related literature top

For the biological and pharmacological properties of piperidines, see: Prostakov & Gaivoronskaya (1978). For biological activity of piperidones with aryl substituents at the 2 and 6 positions, see: Mobio et al. (1989); Ganellin & Spickett (1965). For ring-puckering analysis, see: Cremer & Pople (1975). For the synthesis, see: Baliah et al. (1983).

Experimental top

To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperidine-4-one (Baliah et al., 1983) (5 mmol) and triethylamine(5 mmol) in 30 ml of benzene, chloroacetyl chloride (5 mmol) in 20 ml benzene was added dropwise within about an hour. The resulting mixture was stirred for about 4 hours at room temperature. Afterwards the mixture was quenched in cold water and the organic layer was extracted with ethyl acetate, washed with 5% sodium bicarbonate solution and dried over anhydrous sodium sulphate. Slow evaporation of the solvent leads to crystals of 1-(2-chloroacetyl)-3-methyl-2,6-bis(3,4,5-trimethoxyphenyl) piperidine-4-one.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(carrier atom; 1.5 for methyl H atoms).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and 50% probability displacement ellipsoids.
1-(2-Chloroacetyl)-3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperidine-4-one top
Crystal data top
C26H32ClNO8F(000) = 2208
Mr = 521.98Dx = 1.327 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8214 reflections
a = 13.8720 (8) Åθ = 2.9–25.0°
b = 16.5110 (11) ŵ = 0.20 mm1
c = 22.8120 (16) ÅT = 293 K
V = 5224.9 (6) Å3Block, white
Z = 80.30 × 0.27 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
Detector resolution: 10.0 pixels mm-1h = 1616
ω scansk = 1919
8214 measured reflectionsl = 2726
4464 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0931P)2 + 2.926P]
where P = (Fo2 + 2Fc2)/3
4464 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C26H32ClNO8V = 5224.9 (6) Å3
Mr = 521.98Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.8720 (8) ŵ = 0.20 mm1
b = 16.5110 (11) ÅT = 293 K
c = 22.8120 (16) Å0.30 × 0.27 × 0.25 mm
Data collection top
MacScience DIPLabo 32001
diffractometer
3146 reflections with I > 2σ(I)
8214 measured reflectionsRint = 0.027
4464 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
4464 reflectionsΔρmin = 0.39 e Å3
332 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl120.14569 (9)0.00580 (6)0.36264 (6)0.1014 (5)
O70.0245 (3)0.4484 (3)0.28056 (17)0.1467 (19)
O100.07651 (19)0.14395 (16)0.42507 (10)0.0742 (9)
O190.49642 (15)0.28235 (15)0.40351 (9)0.0623 (8)
O210.57332 (13)0.19912 (15)0.31391 (9)0.0584 (8)
O230.46432 (15)0.15115 (15)0.22323 (9)0.0595 (8)
O310.27178 (17)0.31372 (15)0.56956 (9)0.0649 (8)
O330.26328 (19)0.47563 (15)0.57353 (9)0.0725 (9)
O350.1596 (2)0.55902 (15)0.49519 (11)0.0847 (10)
N10.12281 (16)0.24570 (15)0.36489 (10)0.0473 (8)
C20.0590 (2)0.3025 (2)0.39713 (13)0.0524 (10)
C30.0007 (3)0.3497 (2)0.35294 (16)0.0690 (14)
C40.0569 (3)0.3931 (2)0.30853 (16)0.0760 (16)
C50.1608 (3)0.3656 (2)0.30122 (14)0.0603 (11)
C60.1732 (2)0.27421 (18)0.31092 (12)0.0476 (10)
C80.2024 (4)0.3910 (3)0.24254 (19)0.0953 (19)
C90.1181 (2)0.1667 (2)0.38063 (14)0.0537 (11)
C110.1658 (3)0.10579 (19)0.34041 (16)0.0613 (12)
C130.2804 (2)0.25428 (18)0.31204 (12)0.0447 (9)
C140.3213 (2)0.21277 (19)0.26566 (12)0.0488 (10)
C150.4183 (2)0.19340 (19)0.26646 (12)0.0485 (10)
C160.4755 (2)0.21760 (19)0.31333 (13)0.0497 (10)
C170.4349 (2)0.26141 (19)0.35897 (12)0.0482 (10)
C180.3374 (2)0.27934 (18)0.35895 (12)0.0466 (9)
C200.4600 (3)0.3312 (2)0.44945 (14)0.0661 (11)
C220.5942 (2)0.1200 (2)0.33503 (18)0.0742 (14)
C240.4061 (3)0.1076 (2)0.18305 (15)0.0661 (11)
C250.1140 (2)0.3524 (2)0.44265 (13)0.0507 (10)
C260.1100 (2)0.4354 (2)0.44530 (14)0.0576 (11)
C270.1605 (3)0.4770 (2)0.48873 (14)0.0593 (11)
C280.2159 (2)0.4349 (2)0.52945 (12)0.0551 (11)
C290.2184 (2)0.3514 (2)0.52730 (12)0.0520 (10)
C300.1675 (2)0.3100 (2)0.48416 (13)0.0521 (10)
C320.2524 (3)0.2308 (2)0.58099 (17)0.0713 (12)
C340.3539 (3)0.5089 (3)0.55613 (19)0.0890 (17)
C360.1045 (4)0.6052 (2)0.4561 (2)0.0960 (18)
H20.013500.268800.419100.0630*
H3A0.040100.388600.373900.0830*
H3B0.043800.312400.333100.0830*
H50.198600.393000.331600.0720*
H60.144500.246200.277300.0570*
H8A0.189700.447500.236100.1420*
H8B0.270800.381900.242500.1420*
H8C0.173100.359700.211900.1420*
H11A0.141200.112900.301000.0740*
H11B0.234700.116000.339500.0740*
H140.283500.197800.233800.0590*
H180.310200.307900.390000.0560*
H20A0.407500.303600.468300.0990*
H20B0.510100.341300.477500.0990*
H20C0.437500.381700.433700.0990*
H22A0.563500.080600.310400.1120*
H22B0.662700.111500.334600.1120*
H22C0.570600.114600.374400.1120*
H24A0.372700.145000.158000.0990*
H24B0.446000.072800.159700.0990*
H24C0.360100.075500.204200.0990*
H260.073400.463900.418100.0690*
H300.169300.253700.483000.0630*
H32A0.271900.198800.547900.1070*
H32B0.287600.213900.615100.1070*
H32C0.184600.223600.587700.1070*
H34A0.345400.541200.521500.1340*
H34B0.379000.542000.587100.1340*
H34C0.398300.465700.548000.1340*
H36A0.037600.591300.460300.1440*
H36B0.113100.661700.464600.1440*
H36C0.124900.594400.416700.1440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl120.1112 (9)0.0590 (6)0.1341 (10)0.0100 (6)0.0317 (8)0.0153 (6)
O70.159 (3)0.153 (4)0.128 (3)0.093 (3)0.024 (3)0.062 (3)
O100.0898 (18)0.0728 (17)0.0599 (14)0.0103 (14)0.0180 (14)0.0001 (12)
O190.0498 (12)0.0887 (18)0.0483 (12)0.0076 (11)0.0098 (10)0.0087 (11)
O210.0394 (11)0.0803 (16)0.0554 (12)0.0056 (10)0.0030 (10)0.0077 (11)
O230.0507 (12)0.0819 (16)0.0460 (11)0.0024 (11)0.0044 (10)0.0106 (11)
O310.0698 (14)0.0686 (15)0.0563 (13)0.0078 (12)0.0193 (12)0.0053 (11)
O330.0930 (18)0.0727 (16)0.0519 (12)0.0264 (14)0.0143 (12)0.0041 (11)
O350.123 (2)0.0532 (15)0.0780 (17)0.0040 (14)0.0279 (16)0.0027 (13)
N10.0439 (13)0.0544 (15)0.0437 (13)0.0017 (11)0.0038 (11)0.0064 (11)
C20.0450 (16)0.065 (2)0.0471 (17)0.0039 (14)0.0004 (14)0.0133 (14)
C30.0561 (19)0.082 (3)0.069 (2)0.0179 (18)0.0134 (18)0.0181 (19)
C40.091 (3)0.078 (3)0.059 (2)0.032 (2)0.010 (2)0.0022 (19)
C50.074 (2)0.059 (2)0.0480 (17)0.0071 (16)0.0056 (16)0.0033 (15)
C60.0459 (16)0.0573 (19)0.0395 (14)0.0012 (13)0.0030 (13)0.0037 (13)
C80.122 (4)0.084 (3)0.080 (3)0.014 (3)0.013 (3)0.028 (2)
C90.0534 (18)0.059 (2)0.0488 (17)0.0052 (14)0.0093 (15)0.0025 (15)
C110.063 (2)0.053 (2)0.068 (2)0.0030 (15)0.0041 (17)0.0006 (16)
C130.0458 (15)0.0477 (16)0.0405 (14)0.0050 (13)0.0035 (13)0.0027 (12)
C140.0482 (16)0.0592 (19)0.0391 (15)0.0065 (13)0.0035 (13)0.0010 (13)
C150.0464 (16)0.0610 (19)0.0382 (15)0.0056 (14)0.0041 (13)0.0047 (13)
C160.0434 (16)0.0617 (19)0.0440 (16)0.0083 (13)0.0020 (13)0.0080 (14)
C170.0460 (16)0.0606 (19)0.0381 (15)0.0123 (14)0.0033 (13)0.0044 (13)
C180.0491 (16)0.0526 (18)0.0382 (14)0.0045 (13)0.0007 (13)0.0010 (13)
C200.074 (2)0.072 (2)0.0524 (19)0.0114 (18)0.0165 (18)0.0106 (17)
C220.0535 (19)0.091 (3)0.078 (2)0.0043 (19)0.0008 (19)0.019 (2)
C240.065 (2)0.078 (2)0.0553 (19)0.0018 (18)0.0036 (17)0.0149 (17)
C250.0483 (16)0.060 (2)0.0438 (16)0.0018 (14)0.0009 (14)0.0072 (14)
C260.066 (2)0.058 (2)0.0489 (17)0.0037 (16)0.0071 (16)0.0021 (15)
C270.075 (2)0.0498 (19)0.0531 (18)0.0052 (16)0.0015 (17)0.0044 (15)
C280.066 (2)0.059 (2)0.0404 (15)0.0137 (16)0.0069 (15)0.0030 (14)
C290.0525 (17)0.061 (2)0.0424 (16)0.0044 (14)0.0017 (14)0.0024 (14)
C300.0540 (17)0.0533 (18)0.0491 (16)0.0016 (14)0.0026 (15)0.0063 (14)
C320.080 (2)0.064 (2)0.070 (2)0.0091 (18)0.011 (2)0.0067 (18)
C340.096 (3)0.085 (3)0.086 (3)0.038 (2)0.026 (2)0.012 (2)
C360.147 (4)0.056 (2)0.085 (3)0.007 (3)0.022 (3)0.010 (2)
Geometric parameters (Å, º) top
Cl12—C111.749 (3)C27—C281.392 (5)
O7—C41.201 (6)C28—C291.380 (5)
O10—C91.225 (4)C29—C301.391 (4)
O19—C171.371 (3)C2—H20.9800
O19—C201.416 (4)C3—H3A0.9700
O21—C161.391 (3)C3—H3B0.9700
O21—C221.422 (4)C5—H50.9800
O23—C151.366 (4)C6—H60.9800
O23—C241.418 (4)C8—H8A0.9600
O31—C291.366 (4)C8—H8B0.9600
O31—C321.419 (4)C8—H8C0.9600
O33—C281.377 (4)C11—H11A0.9700
O33—C341.428 (5)C11—H11B0.9700
O35—C271.362 (4)C14—H140.9300
O35—C361.400 (5)C18—H180.9300
N1—C21.485 (4)C20—H20A0.9600
N1—C61.492 (4)C20—H20B0.9600
N1—C91.355 (4)C20—H20C0.9600
C2—C31.520 (5)C22—H22A0.9600
C2—C251.529 (4)C22—H22B0.9600
C3—C41.476 (5)C22—H22C0.9600
C4—C51.520 (6)C24—H24A0.9600
C5—C61.535 (4)C24—H24B0.9600
C5—C81.517 (6)C24—H24C0.9600
C6—C131.523 (4)C26—H260.9300
C9—C111.514 (5)C30—H300.9300
C13—C141.382 (4)C32—H32A0.9600
C13—C181.393 (4)C32—H32B0.9600
C14—C151.383 (4)C32—H32C0.9600
C15—C161.390 (4)C34—H34A0.9600
C16—C171.387 (4)C34—H34B0.9600
C17—C181.385 (4)C34—H34C0.9600
C25—C261.373 (5)C36—H36A0.9600
C25—C301.392 (4)C36—H36B0.9600
C26—C271.394 (5)C36—H36C0.9600
C17—O19—C20118.0 (3)C4—C5—H5107.00
C16—O21—C22113.8 (2)C6—C5—H5107.00
C15—O23—C24117.4 (2)C8—C5—H5107.00
C29—O31—C32117.8 (3)N1—C6—H6108.00
C28—O33—C34113.9 (3)C5—C6—H6108.00
C27—O35—C36118.5 (3)C13—C6—H6108.00
C2—N1—C6119.3 (2)C5—C8—H8A109.00
C2—N1—C9116.6 (2)C5—C8—H8B109.00
C6—N1—C9123.0 (2)C5—C8—H8C109.00
N1—C2—C3108.7 (2)H8A—C8—H8B109.00
N1—C2—C25112.3 (2)H8A—C8—H8C110.00
C3—C2—C25116.5 (3)H8B—C8—H8C109.00
C2—C3—C4114.2 (3)Cl12—C11—H11A109.00
O7—C4—C3122.1 (4)Cl12—C11—H11B109.00
O7—C4—C5121.6 (4)C9—C11—H11A109.00
C3—C4—C5116.3 (3)C9—C11—H11B109.00
C4—C5—C6112.6 (3)H11A—C11—H11B108.00
C4—C5—C8112.0 (3)C13—C14—H14120.00
C6—C5—C8110.9 (3)C15—C14—H14120.00
N1—C6—C5112.1 (2)C13—C18—H18120.00
N1—C6—C13112.1 (2)C17—C18—H18120.00
C5—C6—C13108.9 (3)O19—C20—H20A109.00
O10—C9—N1122.5 (3)O19—C20—H20B110.00
O10—C9—C11120.2 (3)O19—C20—H20C109.00
N1—C9—C11117.3 (3)H20A—C20—H20B109.00
Cl12—C11—C9112.4 (3)H20A—C20—H20C109.00
C6—C13—C14119.7 (2)H20B—C20—H20C110.00
C6—C13—C18120.2 (2)O21—C22—H22A110.00
C14—C13—C18120.1 (3)O21—C22—H22B109.00
C13—C14—C15120.3 (3)O21—C22—H22C109.00
O23—C15—C14124.3 (3)H22A—C22—H22B110.00
O23—C15—C16115.8 (2)H22A—C22—H22C109.00
C14—C15—C16119.9 (3)H22B—C22—H22C109.00
O21—C16—C15120.1 (3)O23—C24—H24A109.00
O21—C16—C17120.2 (3)O23—C24—H24B110.00
C15—C16—C17119.7 (3)O23—C24—H24C110.00
O19—C17—C16115.8 (2)H24A—C24—H24B109.00
O19—C17—C18123.7 (3)H24A—C24—H24C109.00
C16—C17—C18120.5 (3)H24B—C24—H24C109.00
C13—C18—C17119.4 (3)C25—C26—H26120.00
C2—C25—C26123.2 (3)C27—C26—H26120.00
C2—C25—C30117.2 (3)C25—C30—H30120.00
C26—C25—C30119.6 (3)C29—C30—H30120.00
C25—C26—C27120.2 (3)O31—C32—H32A109.00
O35—C27—C26124.2 (3)O31—C32—H32B109.00
O35—C27—C28115.4 (3)O31—C32—H32C110.00
C26—C27—C28120.4 (3)H32A—C32—H32B110.00
O33—C28—C27120.5 (3)H32A—C32—H32C109.00
O33—C28—C29120.1 (3)H32B—C32—H32C109.00
C27—C28—C29119.3 (3)O33—C34—H34A110.00
O31—C29—C28116.3 (3)O33—C34—H34B110.00
O31—C29—C30123.4 (3)O33—C34—H34C109.00
C28—C29—C30120.2 (3)H34A—C34—H34B110.00
C25—C30—C29120.3 (3)H34A—C34—H34C109.00
N1—C2—H2106.00H34B—C34—H34C109.00
C3—C2—H2106.00O35—C36—H36A109.00
C25—C2—H2106.00O35—C36—H36B109.00
C2—C3—H3A109.00O35—C36—H36C110.00
C2—C3—H3B109.00H36A—C36—H36B109.00
C4—C3—H3A109.00H36A—C36—H36C110.00
C4—C3—H3B109.00H36B—C36—H36C109.00
H3A—C3—H3B108.00
C20—O19—C17—C185.9 (4)C4—C5—C6—C13171.4 (3)
C20—O19—C17—C16176.3 (3)C5—C6—C13—C1869.9 (3)
C22—O21—C16—C1797.6 (3)N1—C6—C13—C1854.7 (4)
C22—O21—C16—C1583.5 (4)N1—C6—C13—C14126.7 (3)
C24—O23—C15—C1416.4 (4)C5—C6—C13—C14108.6 (3)
C24—O23—C15—C16163.9 (3)N1—C9—C11—Cl12175.0 (2)
C32—O31—C29—C3019.2 (4)O10—C9—C11—Cl124.3 (4)
C32—O31—C29—C28160.1 (3)C6—C13—C18—C17179.4 (3)
C34—O33—C28—C29100.9 (4)C18—C13—C14—C152.3 (5)
C34—O33—C28—C2782.9 (4)C14—C13—C18—C170.8 (4)
C36—O35—C27—C28179.3 (3)C6—C13—C14—C15179.2 (3)
C36—O35—C27—C260.2 (5)C13—C14—C15—C161.7 (5)
C9—N1—C2—C25103.5 (3)C13—C14—C15—O23178.6 (3)
C6—N1—C9—C110.7 (4)O23—C15—C16—O210.6 (4)
C2—N1—C6—C57.8 (3)O23—C15—C16—C17179.5 (3)
C2—N1—C9—O1011.9 (4)C14—C15—C16—O21179.2 (3)
C9—N1—C2—C3126.2 (3)C14—C15—C16—C170.3 (5)
C6—N1—C2—C342.4 (3)C15—C16—C17—O19179.6 (3)
C2—N1—C9—C11167.4 (3)C15—C16—C17—C181.7 (5)
C6—N1—C9—O10180.0 (3)O21—C16—C17—C18179.4 (3)
C9—N1—C6—C5175.6 (3)O21—C16—C17—O191.5 (4)
C6—N1—C2—C2588.0 (3)O19—C17—C18—C13178.9 (3)
C9—N1—C6—C1361.6 (3)C16—C17—C18—C131.2 (4)
C2—N1—C6—C13130.7 (3)C2—C25—C30—C29179.2 (3)
C3—C2—C25—C261.1 (4)C30—C25—C26—C271.0 (5)
C3—C2—C25—C30178.8 (3)C26—C25—C30—C291.4 (4)
N1—C2—C3—C455.7 (4)C2—C25—C26—C27178.7 (3)
N1—C2—C25—C26127.3 (3)C25—C26—C27—C280.5 (5)
C25—C2—C3—C472.3 (4)C25—C26—C27—O35179.0 (3)
N1—C2—C25—C3055.0 (3)O35—C27—C28—O331.7 (5)
C2—C3—C4—C517.8 (4)O35—C27—C28—C29177.9 (3)
C2—C3—C4—O7160.5 (4)C26—C27—C28—C291.6 (5)
C3—C4—C5—C8159.8 (3)C26—C27—C28—O33177.9 (3)
O7—C4—C5—C6147.7 (4)O33—C28—C29—O311.8 (4)
C3—C4—C5—C634.0 (4)C27—C28—C29—C301.2 (4)
O7—C4—C5—C821.9 (5)O33—C28—C29—C30177.5 (3)
C8—C5—C6—C1362.2 (4)C27—C28—C29—O31178.1 (3)
C8—C5—C6—N1173.2 (3)O31—C29—C30—C25179.6 (3)
C4—C5—C6—N146.8 (3)C28—C29—C30—C250.3 (4)

Experimental details

Crystal data
Chemical formulaC26H32ClNO8
Mr521.98
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.8720 (8), 16.5110 (11), 22.8120 (16)
V3)5224.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8214, 4464, 3146
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.05
No. of reflections4464
No. of parameters332
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.39

Computer programs: XPRESS (MacScience, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the DST and Government of India project SP/I2/FOO/93 and the University of Mysore for financial assistance.

References

First citationBaliah, V., Jeyaraman, R. & Chandrashekaran, L. (1983). Chem. Rev. 83, 379—423.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGanellin, C. R. & Spickett, R. G. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationProstakov, N. S. & Gaivoronskaya, L. A. (1978). Russ. Chem. Rev. 47, 447—469.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds