organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(Benzyl­amino)-4-pyrid­yl]-2-(4-fluoro­phen­yl)ethane-1,2-dione

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 13 May 2009; accepted 25 May 2009; online 29 May 2009)

The crystal structure of the title compound, C20H15FN2O2, contains two crystallographically independent mol­ecules, which are related by a pseudo-inversion center and linked into dimers via inter­molecular N—H⋯N hydrogen bonds. The 4-fluoro­phenyl ring of mol­ecule A makes dihedral angles of 17.17 (16) and 62.25 (15)°, respectively, with the phenyl and pyridine rings. The 4-fluoro­phenyl ring of mol­ecule B makes dihedral angles of 8.50 (16) and 64.59 (15)°, respectively, with the phenyl and pyridine rings. The dihedral angle between the pyridine ring and the phenyl ring of mol­ecule A [60.97 (15)°] is bigger than in mol­ecule B [59.49 (15)°]. The dihedral angle between the two pyridine rings is 1.37 (14)° and between the two phenyl rings is 3.64 (16)°.

Related literature

For α-diketones as inter­mediates in the synthesis of heterocycles, see: Ohta et al. (1982[Ohta, A., Masano, S., Iwakura, S., Tamura, A., Watahiki, H., Tsutsui, M., Akita, Y., Watanabe, T. & Kurihara, T. (1982). J. Heterocycl. Chem. 19, 465-473.]); Wolkenberg et al. (2004[Wolkenberg, S. E., Wisnoski, D. D., Leister, W. H., Wang, Y., Zhao, Z. & Lindsley, C. W. (2004). Org. Lett. 6, 1453-1456.]); Zhao et al. (2003[Zhao, Z., Leister, W. H., Strauss, K. A., Wisnoski, D. D. & Lindsley, C. W. (2003). Tetrahedron Lett. 44, 1123-1127.],2004[Zhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y. & Lindsley, C. W. (2004). Tetrahedron Lett. 45, 4873-4876.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15FN2O2

  • Mr = 334.34

  • Orthorhombic, P c a 21

  • a = 12.0951 (13) Å

  • b = 7.4097 (8) Å

  • c = 35.163 (5) Å

  • V = 3151.3 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 193 K

  • 0.38 × 0.19 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5637 measured reflections

  • 5558 independent reflections

  • 4832 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.05

  • 5558 reflections

  • 451 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2522 Friedel pairs

  • Flack parameter: 0.35 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N44 0.94 2.10 3.037 (3) 174
N47—H47⋯N14 0.94 2.15 3.087 (4) 172

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON .

Supporting information


Comment top

Substituted α-diketones are important building blocks for the synthesis of a variety of heterocyclic compounds, like 1,2,4-triazines (Zhao et al. 2003), chinoxalines (Zhao et al. 2004), pyrimidines (Ohta et al. 1982) or imidazoles (Wolkenberg et al. 2004).

The title compound, 1-(2-(benzylamino)pyridin-4-yl)-2-(4-fluorophenyl)ethane-1,2-dione, was synthesized as an intermediate in the synthesis of 2-(2-alkylaminopyridin-4-yl)-3-(4-fluorophenyl)chinoxalines as potent p38 mitogen-activated protein (MAP) kinase inhibitors.

The crystal structure contains two crystallographically independent molecules of slightly different conformation (Fig. 1). The molecules are related by a pseudo inversion center which is not part of the space group and formes dimers due to intermolecular N–H···N hydrogen bonds (N17—H17···N44 2.10Å and N47—H47···N14 2.15 Å).

The 4-fluorophenyl ring (C1—C6) of molecule A makes dihedral angles of 17.17 (16)° and 62.25 (15)° to the phenyl ring (C19—C24) and the pyridine ring (C11—C13,N14,C15—C16), respectively. The 4-fluorophenyl ring (C31—C36) of molecule B makes dihedral angles of 8.50 (16)° and 64.59 (15)° to the phenyl ring (C49—C54) and the pyridine ring (C41—C43,N44,C45—C46), respectively. The dihedral angle between the pyridine ring and the phenyl ring of molecule A [60.97 (15)°] is bigger than in molecule B [59.49 (15)°]. The dihedral angle between the two pyridine rings is 1.37 (14)° and between the two phenyl rings is 3.64 (16)°. The two molecules forms π-π interaction between the phenyl rings C1—C6/C31–36 (red in Fig.2) and phenyl/pyridin rings C19—C24/C41—C46 (blue in Fig.2). The distances between the centroids C1—C6···C31—C36 and C19—C24···C41—C46 are 3.81Å and 3.83 Å, respectively. The least square planes through the corresponding rings have angles of 2.04° and 9.8°.

Related literature top

For α-diketones as intermediates in the synthesis of heterocycles, see: Ohta et al. (1982); Wolkenberg et al. (2004); Zhao et al. (2003,2004).

Experimental top

Selenium dioxide (0.64 g, 5.7 mmol) and tert-butyl N-benzyl-N-[4-(4-fluorobenzoylmethyl)- 2-pyridyl]carbamate (2.0 g, 4.8 mmol) were treated with glacial acetic acid (40 ml) and heated 4.5 h to reflux temperature. After cooling to room temperature water (70 ml) was added and selenium was filtered off. Ethyl acetate was added to the filtrate and the aqueous phase was extracted twice with ethyl acetate. The combined organic phases were evaporated and the residue was purified by flash-chromatography (silica gel, petroleum ether - ethyl acetate 4:1 to 3:1) to yield 0.82 g (51%) as a red solid. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at 298 K.

Refinement top

Reflections were measured in the range 0 – +h, 0 – +k, 0 – +l and Friedel pairs. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). Hydrogen atoms attached to N17 and N47 were located in diff. Fourier maps and refined with fixed isotropic displacement parameters and applying riding motion model. The absolute structure cannot be determined with certainty and refinement of the structure as a racemic twin does not lead to any improvement of the reliability factors.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of title compound with labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size. Hydrogen bonds with dashed lines.
[Figure 2] Fig. 2. Crystal structure of the title compound. View along the b axis. Aromatic rings involved in π-π interactions are shown in red and blue.
1-[2-(Benzylamino)-4-pyridyl]-2-(4-fluorophenyl)ethane-1,2-dione top
Crystal data top
C20H15FN2O2F(000) = 1392
Mr = 334.34Dx = 1.409 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 12.0951 (13) Åθ = 30–46°
b = 7.4097 (8) ŵ = 0.83 mm1
c = 35.163 (5) ÅT = 193 K
V = 3151.3 (7) Å3Plate, light brown
Z = 80.38 × 0.19 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
Radiation source: FR571 rotating anodeθmax = 70.0°, θmin = 2.5°
Graphite monochromatorh = 1414
ω/2θ scansk = 99
5637 measured reflectionsl = 4242
5558 independent reflections3 standard reflections every 60 min
4832 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.079P)2 + 0.0063P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5558 reflectionsΔρmax = 0.19 e Å3
451 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 2522 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.35 (19)
Crystal data top
C20H15FN2O2V = 3151.3 (7) Å3
Mr = 334.34Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 12.0951 (13) ŵ = 0.83 mm1
b = 7.4097 (8) ÅT = 193 K
c = 35.163 (5) Å0.38 × 0.19 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
5637 measured reflections3 standard reflections every 60 min
5558 independent reflections intensity decay: 2%
4832 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.23 e Å3
5558 reflectionsAbsolute structure: Flack (1983), 2522 Friedel pairs
451 parametersAbsolute structure parameter: 0.35 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.35951 (18)0.4513 (3)0.22618 (6)0.0511 (6)
C10.5181 (2)0.3936 (4)0.32829 (8)0.0219 (6)
C20.5644 (3)0.3233 (4)0.29506 (8)0.0261 (6)
H20.63280.26050.29630.031*
C30.5120 (3)0.3438 (5)0.26040 (9)0.0321 (8)
H30.54370.29740.23770.038*
C40.4121 (3)0.4340 (5)0.25979 (8)0.0315 (7)
C50.3636 (3)0.5030 (5)0.29206 (9)0.0308 (7)
H50.29460.56400.29060.037*
C60.4166 (2)0.4825 (4)0.32648 (8)0.0253 (6)
H60.38390.52890.34900.030*
C70.5813 (2)0.3725 (4)0.36420 (8)0.0233 (6)
O80.67739 (19)0.3251 (3)0.36487 (6)0.0356 (6)
C90.5196 (3)0.3942 (4)0.40219 (8)0.0240 (6)
O100.42846 (19)0.3260 (3)0.40449 (6)0.0356 (6)
C110.5752 (3)0.4838 (4)0.43500 (8)0.0221 (6)
C120.6723 (2)0.5836 (4)0.43184 (8)0.0229 (6)
H120.71120.59240.40840.027*
C130.7097 (2)0.6697 (4)0.46454 (8)0.0241 (6)
H130.77380.74300.46240.029*
N140.6625 (2)0.6572 (3)0.49862 (7)0.0230 (5)
C150.5701 (2)0.5550 (4)0.50181 (8)0.0223 (6)
C160.5233 (3)0.4685 (4)0.47028 (8)0.0239 (6)
H160.45720.40030.47290.029*
N170.5271 (2)0.5395 (4)0.53755 (6)0.0249 (6)
H170.54330.63560.55430.030*
C180.4209 (3)0.4514 (4)0.54384 (8)0.0253 (6)
H18A0.42190.33000.53210.030*
H18B0.36160.52260.53160.030*
C190.3972 (2)0.4342 (4)0.58592 (8)0.0235 (6)
C200.4743 (3)0.3576 (5)0.61064 (9)0.0301 (7)
H200.54230.31310.60080.036*
C210.4531 (3)0.3457 (5)0.64931 (9)0.0335 (7)
H210.50650.29500.66600.040*
C220.3528 (3)0.4088 (5)0.66351 (8)0.0318 (7)
H220.33770.40220.69000.038*
C230.2759 (3)0.4803 (5)0.63923 (9)0.0325 (8)
H230.20740.52250.64900.039*
C240.2967 (3)0.4919 (4)0.60057 (9)0.0261 (6)
H240.24200.53960.58400.031*
F20.88809 (18)0.7836 (3)0.85731 (5)0.0467 (5)
C310.7257 (3)0.9818 (4)0.76425 (7)0.0233 (6)
C320.6788 (3)0.9983 (5)0.80060 (8)0.0287 (7)
H320.60931.05620.80360.034*
C330.7337 (3)0.9305 (5)0.83209 (8)0.0332 (7)
H330.70320.94220.85690.040*
C340.8330 (3)0.8461 (4)0.82649 (9)0.0313 (7)
C350.8795 (3)0.8194 (4)0.79135 (9)0.0290 (7)
H350.94660.75420.78860.035*
C360.8256 (2)0.8907 (4)0.75999 (8)0.0241 (6)
H360.85700.87720.73540.029*
C370.6681 (2)1.0626 (4)0.73148 (8)0.0241 (6)
O380.57767 (19)1.1330 (4)0.73326 (6)0.0361 (6)
C390.7292 (2)1.0728 (4)0.69328 (8)0.0222 (6)
O400.81709 (18)1.1522 (3)0.69255 (6)0.0307 (5)
C410.6762 (3)0.9946 (4)0.65860 (8)0.0213 (6)
C420.5787 (2)0.8949 (4)0.66072 (8)0.0238 (6)
H420.53970.88200.68400.029*
C430.5413 (3)0.8159 (4)0.62775 (9)0.0246 (6)
H430.47590.74520.62910.030*
N440.5911 (2)0.8321 (3)0.59388 (6)0.0228 (5)
C450.6849 (2)0.9320 (4)0.59180 (8)0.0208 (6)
C460.7304 (2)1.0139 (4)0.62435 (8)0.0220 (6)
H460.79711.08120.62270.026*
N470.7298 (2)0.9502 (4)0.55656 (7)0.0251 (6)
H470.70300.86760.53830.030*
C480.8360 (3)1.0397 (4)0.55111 (8)0.0261 (7)
H48A0.89500.96750.56340.031*
H48B0.83431.15970.56350.031*
C490.8623 (3)1.0622 (4)0.50941 (8)0.0239 (6)
C500.7872 (3)1.1396 (4)0.48458 (9)0.0287 (7)
H500.71731.17860.49380.034*
C510.8132 (3)1.1606 (5)0.44644 (9)0.0328 (8)
H510.76081.21270.42960.039*
C520.9152 (3)1.1059 (5)0.43283 (8)0.0328 (7)
H520.93271.12030.40670.039*
C530.9910 (3)1.0306 (5)0.45723 (9)0.0321 (7)
H531.06110.99320.44800.038*
C540.9651 (3)1.0090 (4)0.49550 (9)0.0261 (6)
H541.01790.95760.51230.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0571 (13)0.0679 (15)0.0282 (10)0.0039 (12)0.0212 (9)0.0025 (10)
C10.0243 (14)0.0239 (14)0.0174 (13)0.0046 (12)0.0001 (11)0.0020 (11)
C20.0266 (15)0.0285 (17)0.0231 (14)0.0008 (13)0.0003 (12)0.0061 (12)
C30.0363 (17)0.040 (2)0.0198 (14)0.0057 (16)0.0019 (12)0.0097 (13)
C40.0331 (17)0.0404 (19)0.0209 (14)0.0056 (16)0.0086 (12)0.0032 (13)
C50.0251 (15)0.0329 (16)0.0344 (16)0.0012 (15)0.0044 (13)0.0034 (14)
C60.0269 (15)0.0262 (15)0.0228 (13)0.0013 (13)0.0029 (12)0.0015 (12)
C70.0258 (15)0.0239 (14)0.0202 (13)0.0004 (13)0.0016 (12)0.0010 (11)
O80.0295 (12)0.0499 (15)0.0274 (11)0.0116 (11)0.0028 (9)0.0086 (10)
C90.0271 (16)0.0270 (16)0.0180 (13)0.0007 (13)0.0000 (11)0.0017 (12)
O100.0352 (12)0.0522 (15)0.0196 (10)0.0137 (12)0.0018 (9)0.0015 (10)
C110.0261 (15)0.0224 (14)0.0179 (13)0.0045 (13)0.0004 (12)0.0005 (11)
C120.0247 (14)0.0268 (15)0.0171 (12)0.0031 (13)0.0002 (11)0.0013 (11)
C130.0200 (14)0.0240 (15)0.0283 (15)0.0005 (13)0.0003 (11)0.0024 (11)
N140.0232 (12)0.0268 (13)0.0189 (11)0.0033 (11)0.0013 (10)0.0017 (10)
C150.0226 (14)0.0247 (15)0.0196 (13)0.0042 (13)0.0017 (11)0.0011 (11)
C160.0273 (16)0.0257 (15)0.0188 (14)0.0023 (14)0.0014 (12)0.0009 (11)
N170.0278 (14)0.0298 (14)0.0170 (11)0.0101 (12)0.0006 (10)0.0039 (10)
C180.0254 (15)0.0288 (15)0.0218 (14)0.0084 (14)0.0013 (12)0.0034 (12)
C190.0268 (15)0.0214 (14)0.0222 (14)0.0076 (13)0.0016 (11)0.0018 (11)
C200.0310 (16)0.0294 (17)0.0298 (16)0.0001 (15)0.0028 (13)0.0002 (13)
C210.0391 (19)0.0320 (18)0.0295 (17)0.0012 (16)0.0033 (14)0.0057 (13)
C220.0425 (19)0.0313 (18)0.0216 (15)0.0010 (16)0.0073 (13)0.0006 (12)
C230.0307 (18)0.0341 (18)0.0327 (16)0.0034 (15)0.0110 (14)0.0031 (14)
C240.0232 (15)0.0265 (15)0.0286 (15)0.0029 (14)0.0010 (13)0.0008 (12)
F20.0580 (13)0.0545 (13)0.0275 (10)0.0088 (11)0.0058 (9)0.0144 (9)
C310.0265 (15)0.0262 (15)0.0173 (13)0.0051 (13)0.0002 (11)0.0043 (11)
C320.0285 (16)0.0333 (17)0.0244 (15)0.0011 (14)0.0055 (12)0.0046 (13)
C330.046 (2)0.0357 (17)0.0182 (14)0.0005 (16)0.0047 (13)0.0008 (13)
C340.0433 (18)0.0268 (16)0.0238 (14)0.0042 (15)0.0058 (14)0.0071 (12)
C350.0258 (16)0.0318 (17)0.0293 (15)0.0012 (14)0.0018 (12)0.0024 (13)
C360.0264 (15)0.0261 (15)0.0199 (13)0.0029 (13)0.0025 (11)0.0016 (11)
C370.0275 (15)0.0261 (15)0.0186 (13)0.0010 (14)0.0008 (11)0.0060 (11)
O380.0307 (12)0.0518 (15)0.0257 (11)0.0097 (12)0.0008 (9)0.0047 (10)
C390.0233 (14)0.0258 (15)0.0175 (13)0.0015 (13)0.0008 (11)0.0016 (11)
O400.0295 (11)0.0392 (13)0.0234 (10)0.0109 (10)0.0032 (8)0.0005 (9)
C410.0221 (14)0.0238 (14)0.0180 (13)0.0022 (12)0.0018 (11)0.0010 (11)
C420.0235 (14)0.0269 (15)0.0210 (13)0.0013 (13)0.0036 (11)0.0012 (11)
C430.0218 (14)0.0259 (15)0.0263 (14)0.0019 (13)0.0017 (11)0.0000 (12)
N440.0232 (12)0.0258 (13)0.0192 (11)0.0002 (11)0.0003 (9)0.0030 (9)
C450.0238 (14)0.0195 (13)0.0190 (13)0.0019 (13)0.0027 (11)0.0012 (11)
C460.0214 (15)0.0252 (15)0.0195 (13)0.0010 (12)0.0002 (12)0.0012 (11)
N470.0298 (14)0.0300 (13)0.0155 (10)0.0111 (12)0.0012 (10)0.0016 (10)
C480.0286 (16)0.0283 (16)0.0213 (15)0.0082 (14)0.0004 (12)0.0038 (12)
C490.0282 (16)0.0200 (14)0.0235 (14)0.0055 (14)0.0024 (11)0.0023 (11)
C500.0284 (16)0.0294 (16)0.0284 (15)0.0006 (14)0.0014 (12)0.0018 (12)
C510.0393 (19)0.0317 (18)0.0275 (15)0.0003 (16)0.0068 (14)0.0050 (13)
C520.0486 (19)0.0331 (17)0.0167 (13)0.0072 (17)0.0071 (13)0.0014 (13)
C530.0294 (16)0.0363 (18)0.0304 (15)0.0082 (15)0.0061 (13)0.0051 (14)
C540.0249 (15)0.0273 (15)0.0259 (14)0.0041 (13)0.0008 (13)0.0016 (12)
Geometric parameters (Å, º) top
F1—C41.349 (3)C43—N441.340 (4)
C1—C61.395 (4)N44—C451.357 (4)
C1—C21.396 (4)C45—N471.360 (4)
C1—C71.484 (4)C45—C461.408 (4)
C2—C31.382 (4)N47—C481.458 (4)
C3—C41.381 (5)C48—C491.510 (4)
C4—C51.376 (5)C49—C501.384 (4)
C5—C61.378 (4)C49—C541.392 (4)
C7—O81.214 (4)C50—C511.386 (4)
C7—C91.539 (4)C51—C521.383 (5)
C9—O101.215 (4)C52—C531.374 (5)
C9—C111.491 (4)C53—C541.391 (4)
C11—C121.392 (4)N17—H170.9400
C11—C161.395 (4)N47—H470.9400
C12—C131.391 (4)C2—H20.9500
C13—N141.330 (4)C3—H30.9500
N14—C151.355 (4)C5—H50.9500
C15—N171.365 (4)C6—H60.9500
C15—C161.400 (4)C12—H120.9500
N17—C181.458 (4)C13—H130.9500
C18—C191.513 (4)C16—H160.9500
C19—C241.387 (4)C18—H18B0.9900
C19—C201.396 (4)C18—H18A0.9900
C20—C211.387 (4)C20—H200.9500
C21—C221.393 (5)C21—H210.9500
C22—C231.369 (5)C22—H220.9500
C23—C241.385 (4)C23—H230.9500
F2—C341.354 (3)C24—H240.9500
C31—C361.391 (4)C33—H330.9500
C31—C321.404 (4)C35—H350.9500
C31—C371.474 (4)C36—H360.9500
C32—C331.385 (5)C42—H420.9500
C33—C341.369 (5)C43—H430.9500
C34—C351.372 (4)C46—H460.9500
C35—C361.385 (4)C48—H48A0.9900
C37—O381.213 (4)C48—H48B0.9900
C37—C391.535 (4)C50—H500.9500
C39—O401.215 (4)C51—H510.9500
C39—C411.495 (4)C52—H520.9500
C41—C461.379 (4)C53—H530.9500
C41—C421.393 (4)C54—H540.9500
C42—C431.375 (4)
C6—C1—C2119.4 (3)C49—C50—C51120.5 (3)
C6—C1—C7122.8 (2)C52—C51—C50120.3 (3)
C2—C1—C7117.8 (3)C53—C52—C51119.9 (3)
C3—C2—C1120.8 (3)C52—C53—C54120.0 (3)
C4—C3—C2117.9 (3)C53—C54—C49120.6 (3)
F1—C4—C5119.1 (3)C15—N17—H17116.00
F1—C4—C3118.2 (3)C18—N17—H17115.00
C5—C4—C3122.7 (3)C45—N47—H47115.00
C4—C5—C6119.0 (3)C48—N47—H47121.00
C5—C6—C1120.1 (3)C3—C2—H2120.00
O8—C7—C1122.7 (3)C1—C2—H2120.00
O8—C7—C9118.5 (3)C4—C3—H3121.00
C1—C7—C9118.5 (2)C2—C3—H3121.00
O10—C9—C11122.8 (3)C4—C5—H5120.00
O10—C9—C7117.0 (3)C6—C5—H5121.00
C11—C9—C7120.0 (3)C1—C6—H6120.00
C12—C11—C16119.6 (3)C5—C6—H6120.00
C12—C11—C9123.7 (3)C13—C12—H12122.00
C16—C11—C9116.7 (3)C11—C12—H12122.00
C13—C12—C11116.9 (3)N14—C13—H13117.00
N14—C13—C12125.0 (3)C12—C13—H13118.00
C13—N14—C15117.9 (2)C11—C16—H16121.00
N14—C15—N17115.9 (3)C15—C16—H16120.00
N14—C15—C16121.6 (3)H18A—C18—H18B108.00
N17—C15—C16122.5 (3)C19—C18—H18A109.00
C11—C16—C15119.0 (3)C19—C18—H18B109.00
C15—N17—C18120.8 (2)N17—C18—H18A109.00
N17—C18—C19110.7 (2)N17—C18—H18B110.00
C24—C19—C20118.7 (3)C21—C20—H20120.00
C24—C19—C18120.3 (3)C19—C20—H20119.00
C20—C19—C18121.1 (3)C20—C21—H21120.00
C21—C20—C19120.8 (3)C22—C21—H21120.00
C20—C21—C22119.5 (3)C23—C22—H22120.00
C23—C22—C21119.9 (3)C21—C22—H22120.00
C22—C23—C24120.8 (3)C22—C23—H23120.00
C23—C24—C19120.3 (3)C24—C23—H23120.00
C36—C31—C32119.4 (3)C19—C24—H24120.00
C36—C31—C37121.6 (3)C23—C24—H24120.00
C32—C31—C37119.0 (3)C31—C32—H32120.00
C33—C32—C31120.2 (3)C33—C32—H32120.00
C34—C33—C32118.1 (3)C32—C33—H33121.00
F2—C34—C33118.2 (3)C34—C33—H33121.00
F2—C34—C35118.0 (3)C34—C35—H35121.00
C33—C34—C35123.7 (3)C36—C35—H35121.00
C34—C35—C36118.0 (3)C31—C36—H36120.00
C35—C36—C31120.5 (3)C35—C36—H36120.00
O38—C37—C31124.1 (3)C41—C42—H42121.00
O38—C37—C39117.3 (3)C43—C42—H42121.00
C31—C37—C39118.4 (2)N44—C43—H43118.00
O40—C39—C41123.1 (3)C42—C43—H43118.00
O40—C39—C37117.6 (3)C41—C46—H46121.00
C41—C39—C37119.2 (2)C45—C46—H46121.00
C46—C41—C42120.3 (3)N47—C48—H48A109.00
C46—C41—C39117.9 (3)N47—C48—H48B109.00
C42—C41—C39121.7 (3)C49—C48—H48A109.00
C43—C42—C41117.3 (3)C49—C48—H48B109.00
N44—C43—C42124.3 (3)H48A—C48—H48B108.00
C43—N44—C45118.2 (2)C49—C50—H50120.00
N44—C45—N47116.0 (2)C51—C50—H50120.00
N44—C45—C46121.2 (3)C50—C51—H51120.00
N47—C45—C46122.8 (3)C52—C51—H51120.00
C41—C46—C45118.6 (3)C51—C52—H52120.00
C45—N47—C48121.1 (2)C53—C52—H52120.00
N47—C48—C49111.3 (2)C52—C53—H53120.00
C50—C49—C54118.8 (3)C54—C53—H53120.00
C50—C49—C48121.3 (3)C49—C54—H54120.00
C54—C49—C48119.9 (3)C53—C54—H54120.00
C13—N14—C15—C161.7 (4)C18—C19—C24—C23178.4 (3)
C15—N14—C13—C120.9 (4)C24—C19—C20—C212.6 (5)
C13—N14—C15—N17177.3 (3)C19—C20—C21—C220.9 (5)
C18—N17—C15—N14172.6 (3)C20—C21—C22—C230.6 (6)
C18—N17—C15—C168.5 (4)C21—C22—C23—C240.4 (6)
C15—N17—C18—C19174.1 (3)C22—C23—C24—C191.3 (5)
C45—N44—C43—C420.4 (4)C32—C31—C36—C351.1 (5)
C43—N44—C45—C461.2 (4)C32—C31—C37—O385.4 (5)
C43—N44—C45—N47177.5 (3)C37—C31—C32—C33177.2 (3)
C45—N47—C48—C49173.5 (3)C36—C31—C32—C332.5 (5)
C48—N47—C45—C467.2 (4)C36—C31—C37—O38175.0 (3)
C48—N47—C45—N44174.1 (3)C36—C31—C37—C3910.1 (4)
C2—C1—C6—C51.0 (4)C32—C31—C37—C39169.5 (3)
C2—C1—C7—C9161.5 (3)C37—C31—C36—C35178.5 (3)
C2—C1—C7—O812.6 (4)C31—C32—C33—C340.8 (5)
C6—C1—C7—C919.6 (4)C32—C33—C34—C352.3 (5)
C7—C1—C2—C3177.7 (3)C32—C33—C34—F2178.4 (3)
C6—C1—C2—C31.3 (5)F2—C34—C35—C36177.1 (3)
C7—C1—C6—C5177.8 (3)C33—C34—C35—C363.6 (5)
C6—C1—C7—O8166.3 (3)C34—C35—C36—C311.8 (5)
C1—C2—C3—C40.7 (5)C31—C37—C39—C41126.0 (3)
C2—C3—C4—C50.1 (6)C31—C37—C39—O4057.3 (4)
C2—C3—C4—F1178.7 (3)O38—C37—C39—O40118.0 (3)
C3—C4—C5—C60.3 (6)O38—C37—C39—C4158.8 (4)
F1—C4—C5—C6178.9 (3)O40—C39—C41—C42176.1 (3)
C4—C5—C6—C10.3 (5)C37—C39—C41—C46176.7 (3)
C1—C7—C9—O1041.8 (4)C37—C39—C41—C427.4 (4)
C1—C7—C9—C11142.6 (3)O40—C39—C41—C460.2 (4)
O8—C7—C9—C1143.0 (4)C39—C41—C42—C43174.7 (3)
O8—C7—C9—O10132.6 (3)C46—C41—C42—C431.1 (4)
C7—C9—C11—C1213.7 (5)C42—C41—C46—C450.4 (4)
O10—C9—C11—C167.2 (5)C39—C41—C46—C45176.3 (3)
C7—C9—C11—C16168.2 (3)C41—C42—C43—N441.5 (5)
O10—C9—C11—C12171.0 (3)N44—C45—C46—C411.6 (4)
C12—C11—C16—C150.3 (5)N47—C45—C46—C41177.1 (3)
C9—C11—C16—C15178.0 (3)N47—C48—C49—C5051.5 (4)
C9—C11—C12—C13175.5 (3)N47—C48—C49—C54130.3 (3)
C16—C11—C12—C132.6 (4)C48—C49—C50—C51179.4 (3)
C11—C12—C13—N143.1 (4)C54—C49—C50—C511.2 (5)
N17—C15—C16—C11176.9 (3)C48—C49—C54—C53179.3 (3)
N14—C15—C16—C112.0 (4)C50—C49—C54—C531.1 (5)
N17—C18—C19—C24129.3 (3)C49—C50—C51—C520.7 (5)
N17—C18—C19—C2051.8 (4)C50—C51—C52—C530.0 (5)
C20—C19—C24—C232.7 (5)C51—C52—C53—C540.2 (5)
C18—C19—C20—C21178.6 (3)C52—C53—C54—C490.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N440.942.103.037 (3)174
N47—H47···N140.942.153.087 (4)172

Experimental details

Crystal data
Chemical formulaC20H15FN2O2
Mr334.34
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)193
a, b, c (Å)12.0951 (13), 7.4097 (8), 35.163 (5)
V3)3151.3 (7)
Z8
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.38 × 0.19 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5637, 5558, 4832
Rint0.054
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.05
No. of reflections5558
No. of parameters451
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23
Absolute structureFlack (1983), 2522 Friedel pairs
Absolute structure parameter0.35 (19)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N440.94002.10003.037 (3)174.00
N47—H47···N140.94002.15003.087 (4)172.00
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOhta, A., Masano, S., Iwakura, S., Tamura, A., Watahiki, H., Tsutsui, M., Akita, Y., Watanabe, T. & Kurihara, T. (1982). J. Heterocycl. Chem. 19, 465–473.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolkenberg, S. E., Wisnoski, D. D., Leister, W. H., Wang, Y., Zhao, Z. & Lindsley, C. W. (2004). Org. Lett. 6, 1453–1456.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, Z., Leister, W. H., Strauss, K. A., Wisnoski, D. D. & Lindsley, C. W. (2003). Tetrahedron Lett. 44, 1123–1127.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y. & Lindsley, C. W. (2004). Tetrahedron Lett. 45, 4873–4876.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds