organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{4-[(2,2-Di­methyl-4,6-dioxo-1,3-dioxan-5-yl­­idene)methyl­amino]phen­yl}aceto­nitrile

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China, and bState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
*Correspondence e-mail: lirui@scu.edu.cn

(Received 3 May 2009; accepted 8 May 2009; online 14 May 2009)

The title compound, C15H14N2O4, is approximately planar, with a dihedral angle of 6.48 (4)° between the amino­methyl­ene unit and the planar five-atom part of the dioxane ring, and a dihedral angle of 2.40 (4)° between amino­methyl­ene unit and the phenyl­ene ring. The dioxane ring is envelope shaped, with the dimethyl-substituted C atom that represents the flap 0.535 (8) Å out of the plane. The mol­ecule has an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the synthesis of related anti­tumor precursors, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]). For the crystal structure of a related compound, see: da Silva et al. (2006[Silva, L. E. da, Joussef, A. C., Silva, L. L., Foro, S. & Schmidt, B. (2006). Acta Cryst. E62, o3866-o3867.]). For Meldrum's acid, see: Meldrum (1908[Meldrum, A. N. (1908). J. Chem. Soc. Trans. 93, 598-601.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Triclinic, [P \overline 1]

  • a = 5.204 (3) Å

  • b = 11.239 (3) Å

  • c = 12.209 (4) Å

  • α = 85.51 (3)°

  • β = 82.30 (3)°

  • γ = 84.54 (2)°

  • V = 702.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.52 × 0.48 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3217 measured reflections

  • 2609 independent reflections

  • 1610 reflections with I > 2σ(I)

  • Rint = 0.003

  • 3 standard reflections every 150 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.150

  • S = 1.09

  • 2609 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3 0.97 (2) 1.94 (2) 2.710 (3) 135 (2)

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4(1H)quinolone structure plays an extremely important role in the field of pharmaceutical chemistry. These compounds have been used as precursors for anticancer agents, anti-malarial agents and reversible (H+/K+) ATPase inhibitors (Ruchelman et al.,2003). 5-arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones are the key intermediates which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).

In the structure of the title molecule (Fig. 1), it is approximately planar with the dihedral angles of 6.48 (4)° and 2.40 (4)° between the connecting aminomethylene unit and the planar part of the dioxane ring, and between the dimethoxybenzyl ring and the aminomethylene group, respectively. Besides, the dioxane ring of the title compound exhibits a half-boat conformation, in which the C atom between the dioxane oxygen atoms is -0.535 (8) Å out-of-plane.

The intramolecular N—H···O hydrogen bond (Table 1) is stabilizing the planar conformation in the molecule. Intermolecular weak C—H···O hydrogen bonding contacts (Table 1) result in the formation of sheets running parallel to the a-c plane in the crystal structure (Fig. 2).

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985). For the synthesis of related antitumor precursors, see: Ruchelman et al. (2003). For the crystal structure of a related compound, see: da Silva et al. (2006). For Meldrum's acid, see: Meldrum (1908).

Experimental top

A ethanol solution (50 ml) of 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2 h, then the arylamine (1.32 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 8 h and then filtered. Single crystals were obtained from the filtrate after 2 days.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model with Uĩso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing the layer-like aggregation of the title molecules in the unit cell.
2-{4-[(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino]phenyl}acetonitrile top
Crystal data top
C15H14N2O4Z = 2
Mr = 286.28F(000) = 300
Triclinic, P1Dx = 1.353 Mg m3
a = 5.204 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.239 (3) ÅCell parameters from 26 reflections
c = 12.209 (4) Åθ = 5.5–9.7°
α = 85.51 (3)°µ = 0.10 mm1
β = 82.30 (3)°T = 292 K
γ = 84.54 (2)°Block, colourless
V = 702.9 (5) Å30.52 × 0.48 × 0.23 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.003
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.7°
Graphite monochromatorh = 66
ω/2–θ scansk = 213
3217 measured reflectionsl = 1414
2609 independent reflections3 standard reflections every 150 reflections
1610 reflections with I > 2σ(I) intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0853P)2]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H14N2O4γ = 84.54 (2)°
Mr = 286.28V = 702.9 (5) Å3
Triclinic, P1Z = 2
a = 5.204 (3) ÅMo Kα radiation
b = 11.239 (3) ŵ = 0.10 mm1
c = 12.209 (4) ÅT = 292 K
α = 85.51 (3)°0.52 × 0.48 × 0.23 mm
β = 82.30 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.003
3217 measured reflections3 standard reflections every 150 reflections
2609 independent reflections intensity decay: 1.3%
1610 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.19 e Å3
2609 reflectionsΔρmin = 0.20 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5677 (3)0.03464 (12)0.29695 (11)0.0620 (4)
O20.8342 (3)0.19500 (12)0.26775 (11)0.0573 (4)
O30.2465 (3)0.02806 (12)0.43304 (11)0.0639 (4)
O40.7647 (3)0.35124 (12)0.36881 (12)0.0634 (4)
N10.1001 (3)0.22676 (14)0.54592 (13)0.0498 (4)
H1N0.074 (5)0.145 (2)0.5335 (18)0.091 (8)*
N20.9365 (5)0.3352 (2)0.9847 (2)0.1123 (9)
C10.9231 (5)0.0301 (2)0.1573 (2)0.0831 (8)
H1A1.01960.07540.09840.125*
H1B0.84800.03290.12710.125*
H1C1.03770.00400.20900.125*
C20.5317 (5)0.1765 (2)0.13934 (18)0.0744 (7)
H2A0.39120.22030.18230.112*
H2B0.46290.11980.09860.112*
H2C0.62680.23110.08860.112*
C30.7107 (4)0.11099 (19)0.21537 (16)0.0573 (6)
C40.4120 (4)0.08606 (17)0.38115 (16)0.0519 (5)
C50.4624 (4)0.20480 (16)0.40360 (15)0.0471 (5)
C60.6901 (4)0.25836 (17)0.34787 (15)0.0477 (5)
C70.3046 (4)0.26618 (16)0.48329 (15)0.0493 (5)
H70.34590.34280.49410.059*
C80.0785 (4)0.29056 (16)0.62235 (15)0.0472 (5)
C90.2817 (4)0.23184 (17)0.67757 (17)0.0568 (6)
H90.29710.15280.66380.068*
C100.4632 (4)0.28879 (18)0.75328 (16)0.0573 (6)
H100.59970.24760.79010.069*
C110.4454 (4)0.40591 (18)0.77514 (16)0.0507 (5)
C120.2402 (4)0.46434 (17)0.71855 (16)0.0535 (5)
H120.22530.54350.73210.064*
C130.0575 (4)0.40860 (17)0.64268 (16)0.0541 (5)
H130.07860.44970.60550.065*
C140.6446 (4)0.47201 (19)0.85500 (16)0.0608 (6)
H14A0.55480.51840.89940.073*
H14B0.75410.52780.81300.073*
C150.8082 (5)0.3952 (2)0.92822 (19)0.0722 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0652 (9)0.0508 (8)0.0660 (9)0.0175 (7)0.0196 (7)0.0113 (7)
O20.0452 (8)0.0627 (8)0.0639 (9)0.0173 (7)0.0036 (7)0.0054 (7)
O30.0655 (9)0.0509 (8)0.0712 (9)0.0237 (7)0.0208 (7)0.0066 (7)
O40.0655 (10)0.0527 (8)0.0744 (9)0.0237 (7)0.0061 (8)0.0008 (7)
N10.0521 (10)0.0400 (9)0.0560 (9)0.0069 (8)0.0003 (8)0.0045 (7)
N20.112 (2)0.0951 (17)0.1082 (18)0.0057 (15)0.0499 (16)0.0130 (14)
C10.0696 (17)0.0865 (18)0.0876 (17)0.0170 (15)0.0277 (14)0.0232 (15)
C20.0662 (15)0.0952 (18)0.0641 (14)0.0285 (14)0.0041 (12)0.0003 (13)
C30.0520 (12)0.0619 (12)0.0571 (12)0.0221 (11)0.0108 (10)0.0073 (10)
C40.0511 (12)0.0481 (11)0.0539 (11)0.0108 (10)0.0060 (10)0.0019 (9)
C50.0457 (11)0.0442 (10)0.0507 (11)0.0097 (9)0.0017 (9)0.0007 (9)
C60.0449 (11)0.0456 (10)0.0523 (11)0.0087 (9)0.0041 (9)0.0016 (9)
C70.0522 (12)0.0413 (10)0.0537 (11)0.0080 (9)0.0031 (10)0.0001 (9)
C80.0477 (11)0.0442 (10)0.0489 (11)0.0069 (9)0.0019 (9)0.0016 (8)
C90.0632 (14)0.0410 (11)0.0657 (13)0.0151 (10)0.0017 (11)0.0055 (10)
C100.0567 (13)0.0499 (11)0.0631 (13)0.0166 (10)0.0086 (10)0.0036 (10)
C110.0506 (12)0.0497 (11)0.0501 (11)0.0044 (9)0.0022 (9)0.0003 (9)
C120.0563 (13)0.0397 (10)0.0630 (12)0.0061 (9)0.0018 (10)0.0068 (9)
C130.0505 (12)0.0472 (11)0.0628 (12)0.0106 (10)0.0037 (10)0.0029 (9)
C140.0619 (14)0.0592 (12)0.0572 (12)0.0039 (11)0.0071 (11)0.0049 (10)
C150.0707 (16)0.0721 (15)0.0639 (14)0.0053 (13)0.0158 (12)0.0019 (12)
Geometric parameters (Å, º) top
O1—C41.352 (2)C4—C51.438 (2)
O1—C31.439 (2)C5—C71.371 (3)
O2—C61.356 (2)C5—C61.444 (3)
O2—C31.426 (2)C7—H70.9300
O3—C41.210 (2)C8—C91.371 (3)
O4—C61.205 (2)C8—C131.386 (3)
N1—C71.316 (2)C9—C101.379 (3)
N1—C81.412 (2)C9—H90.9300
N1—H1n0.96 (2)C10—C111.378 (3)
N2—C151.125 (3)C10—H100.9300
C1—C31.500 (3)C11—C121.383 (3)
C1—H1A0.9600C11—C141.508 (3)
C1—H1B0.9600C12—C131.377 (3)
C1—H1C0.9600C12—H120.9300
C2—C31.505 (3)C13—H130.9300
C2—H2A0.9600C14—C151.444 (3)
C2—H2B0.9600C14—H14A0.9700
C2—H2C0.9600C14—H14B0.9700
C4—O1—C3118.27 (15)O4—C6—C5125.76 (19)
C6—O2—C3118.41 (15)O2—C6—C5115.95 (15)
C7—N1—C8127.60 (16)N1—C7—C5126.03 (17)
C7—N1—H1N112.8 (15)N1—C7—H7117.0
C8—N1—H1N119.5 (15)C5—C7—H7117.0
C3—C1—H1A109.5C9—C8—C13119.39 (18)
C3—C1—H1B109.5C9—C8—N1117.65 (16)
H1A—C1—H1B109.5C13—C8—N1122.96 (17)
C3—C1—H1C109.5C8—C9—C10120.69 (17)
H1A—C1—H1C109.5C8—C9—H9119.7
H1B—C1—H1C109.5C10—C9—H9119.7
C3—C2—H2A109.5C11—C10—C9120.89 (19)
C3—C2—H2B109.5C11—C10—H10119.6
H2A—C2—H2B109.5C9—C10—H10119.6
C3—C2—H2C109.5C10—C11—C12117.88 (19)
H2A—C2—H2C109.5C10—C11—C14122.30 (19)
H2B—C2—H2C109.5C12—C11—C14119.80 (17)
O2—C3—O1110.49 (15)C13—C12—C11121.86 (17)
O2—C3—C1106.90 (17)C13—C12—H12119.1
O1—C3—C1105.58 (18)C11—C12—H12119.1
O2—C3—C2109.82 (18)C12—C13—C8119.30 (18)
O1—C3—C2110.28 (17)C12—C13—H13120.4
C1—C3—C2113.65 (19)C8—C13—H13120.4
O3—C4—O1117.85 (16)C15—C14—C11114.09 (18)
O3—C4—C5125.29 (18)C15—C14—H14A108.7
O1—C4—C5116.83 (16)C11—C14—H14A108.7
C7—C5—C4120.65 (17)C15—C14—H14B108.7
C7—C5—C6118.69 (16)C11—C14—H14B108.7
C4—C5—C6120.53 (17)H14A—C14—H14B107.6
O4—C6—O2118.25 (17)N2—C15—C14179.5 (3)
C6—O2—C3—O149.2 (2)C8—N1—C7—C5174.51 (18)
C6—O2—C3—C1163.65 (17)C4—C5—C7—N10.3 (3)
C6—O2—C3—C272.6 (2)C6—C5—C7—N1175.62 (18)
C4—O1—C3—O246.8 (2)C7—N1—C8—C9178.79 (18)
C4—O1—C3—C1162.08 (18)C7—N1—C8—C130.7 (3)
C4—O1—C3—C274.8 (2)C13—C8—C9—C100.4 (3)
C3—O1—C4—O3162.19 (19)N1—C8—C9—C10179.96 (18)
C3—O1—C4—C519.5 (3)C8—C9—C10—C110.1 (3)
O3—C4—C5—C75.6 (3)C9—C10—C11—C120.2 (3)
O1—C4—C5—C7176.25 (17)C9—C10—C11—C14178.25 (19)
O3—C4—C5—C6170.2 (2)C10—C11—C12—C130.1 (3)
O1—C4—C5—C67.9 (3)C14—C11—C12—C13178.27 (19)
C3—O2—C6—O4158.33 (18)C11—C12—C13—C80.2 (3)
C3—O2—C6—C523.8 (2)C9—C8—C13—C120.4 (3)
C7—C5—C6—O44.2 (3)N1—C8—C13—C12179.96 (18)
C4—C5—C6—O4171.73 (19)C10—C11—C14—C1516.7 (3)
C7—C5—C6—O2178.17 (16)C12—C11—C14—C15165.3 (2)
C4—C5—C6—O25.9 (3)C11—C14—C15—N269 (31)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.97 (2)1.94 (2)2.710 (3)135 (2)
C7—H7···O40.932.492.816 (3)100
C9—H9···O3i0.932.413.292 (3)159
C13—H13···O4ii0.932.513.208 (3)132
C14—H14B···O4iii0.972.513.343 (3)143
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)5.204 (3), 11.239 (3), 12.209 (4)
α, β, γ (°)85.51 (3), 82.30 (3), 84.54 (2)
V3)702.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.48 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3217, 2609, 1610
Rint0.003
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.150, 1.09
No. of reflections2609
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.97 (2)1.94 (2)2.710 (3)135 (2)
 

Acknowledgements

This research was supported financially by the State Key Laboratory of Drug Research (Shanghai Institute of Materia Medica, Chinese Academy of Sciences).

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationMeldrum, A. N. (1908). J. Chem. Soc. Trans. 93, 598–601.  CrossRef CAS Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. E. da, Joussef, A. C., Silva, L. L., Foro, S. & Schmidt, B. (2006). Acta Cryst. E62, o3866–o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds