organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[3-(2-Pyrid­yl)-1H-pyrazol-1-yl]propan­amide

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zjf@nbu.edu.cn

(Received 8 May 2009; accepted 20 May 2009; online 29 May 2009)

In the title compound, C11H12N4O, the pyrazole and pyridine rings are nearly coplanar [dihedral angle = 1.87 (5)°]. Adjacent mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds into a linear chain running along the c axis.

Related literature

For the chemistry of 3-(2-pyrid­yl)pyrazoles, see: Ruben et al. (2004[Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J. M. (2004). Angew. Chem. Int. Ed. 43, 3644-3662.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N4O

  • Mr = 216.25

  • Triclinic, [P \overline 1]

  • a = 7.7446 (15) Å

  • b = 8.3517 (17) Å

  • c = 8.4804 (17) Å

  • α = 97.99 (3)°

  • β = 98.95 (3)°

  • γ = 90.40 (3)°

  • V = 536.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.58 × 0.55 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.972

  • 5019 measured reflections

  • 2410 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.12

  • 2410 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.11 2.968 (2) 175
N1—H1B⋯N4ii 0.86 2.21 3.055 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Great attention has been paid to 3-(2-pyridyl)pyrazole-based ligands in the area of coordination chemistry, not only due to they can act as bridging or chelate ligands and their intriguing structures, but also for their potential applications as functional materials (Ruben et al., 2004; Steel et al., 2005). Herein, We report the structure of a N-Pyrazolylpropanamide ligand, C11H12N4O (Scheme 1).

As is shown in Figure 1, in the title compound, the dihedral angle between pyrazole and pyridine ring is 1.87 (5)°, and the torsion angle of N3—C6—C7—N4 is 179.36 (2)°. The molecules are formed into a three-dimensional supermolecular network through intermolecular weak N—H···N (N···N= 3.055 (2) Å) and N—H···O (N···O= 2.968 (2) Å) hydrogen bonds (Figure 2).The hydrogen bond geometry parameters are list in Table 1. Weak π-π stacking interactions between pyrazole ring (N2/N3/C6/C5/C4) and pyridine ring (N4/C7/C8/C9/C10/C11) (symmetric code: -x, -y, 2 - z), with a centroid-to-centroid distance of 3.828 (1)Å and interplanar distance of 3.739 (1) Å, help to stabilize the crystal structure.

Related literature top

For the chemistry of 3-(2-pyridyl)pyrazoles, see: Ruben et al. (2004); Steel (2005).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (2.9 g, 20 mmol), sodium hydroxide (0.16 g, 4 mmol), N,N'-dimethylformamide(DMF)(100 ml) was stirred and heated to 373 k. A solution of acrylamide (1.44 g, 20 mmol) solubilized in DMF(10 ml)was added dropwise over a period of 10 minutes. After 7 h, heating was then terminated, and the solution was cooled to room temperature. The mixture was filtered, and DMF was removed by vacuum distillation. The product was then recrystallized from ethanol (yield: 64.7%; mp: 427 K). Calculated for C11H12N4O: C 61.10, H 5.59, N 25.91%; found: C 60.03, H 5.48, N 25.86%.

Refinement top

H atoms bound to C and N atoms were positioned geometrically and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. Partial packing view of the title compound. Dashed lines indicate N—H···N and N—H···O hydrogen bonds.
3-[3-(2-Pyridyl)-1H-pyrazol-1-yl]propanamide top
Crystal data top
C11H12N4OZ = 2
Mr = 216.25F(000) = 228
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7446 (15) ÅCell parameters from 5019 reflections
b = 8.3517 (17) Åθ = 3.2–27.4°
c = 8.4804 (17) ŵ = 0.09 mm1
α = 97.99 (3)°T = 293 K
β = 98.95 (3)°Block, colorless
γ = 90.40 (3)°0.58 × 0.55 × 0.27 mm
V = 536.4 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2410 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.947, Tmax = 0.972l = 1010
5019 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0265P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2410 reflectionsΔρmax = 0.37 e Å3
146 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (11)
Crystal data top
C11H12N4Oγ = 90.40 (3)°
Mr = 216.25V = 536.4 (2) Å3
Triclinic, P1Z = 2
a = 7.7446 (15) ÅMo Kα radiation
b = 8.3517 (17) ŵ = 0.09 mm1
c = 8.4804 (17) ÅT = 293 K
α = 97.99 (3)°0.58 × 0.55 × 0.27 mm
β = 98.95 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2410 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1937 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.972Rint = 0.029
5019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.12Δρmax = 0.37 e Å3
2410 reflectionsΔρmin = 0.28 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41230 (16)0.30020 (14)0.39463 (14)0.0502 (3)
H1A0.50370.36230.40580.060*
H1B0.40390.21100.32930.060*
O10.28772 (12)0.46829 (11)0.57395 (12)0.0495 (3)
C10.28366 (17)0.34222 (15)0.47849 (14)0.0391 (3)
C20.13022 (19)0.22241 (18)0.44677 (16)0.0509 (4)
H2A0.06830.22570.33870.061*
H2B0.17480.11450.45030.061*
C30.00195 (18)0.25207 (18)0.56416 (17)0.0477 (4)
H3A0.03730.36230.56640.057*
H3B0.09940.18010.52660.057*
N20.07610 (14)0.22676 (13)0.72718 (13)0.0403 (3)
C40.0879 (2)0.33312 (17)0.86282 (18)0.0500 (4)
H4A0.05180.43950.87030.060*
C50.1622 (2)0.25694 (17)0.98736 (17)0.0496 (4)
H5A0.18740.29961.09590.060*
C60.19232 (15)0.09985 (15)0.91577 (15)0.0367 (3)
N30.13956 (14)0.08220 (13)0.75618 (13)0.0401 (3)
C70.26942 (15)0.03550 (14)0.99317 (15)0.0368 (3)
C80.28816 (18)0.18581 (16)0.90392 (18)0.0457 (3)
H8A0.25470.20210.79260.055*
C90.3569 (2)0.30988 (17)0.9829 (2)0.0555 (4)
H9A0.37060.41100.92530.067*
C100.4054 (2)0.28298 (19)1.1479 (2)0.0576 (4)
H10A0.44980.36551.20410.069*
C110.3862 (2)0.13031 (19)1.22693 (19)0.0538 (4)
H11A0.42100.11161.33810.065*
N40.32045 (15)0.00708 (14)1.15354 (14)0.0451 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0535 (7)0.0437 (6)0.0500 (7)0.0114 (5)0.0099 (5)0.0069 (5)
O10.0528 (6)0.0395 (5)0.0531 (6)0.0070 (4)0.0085 (5)0.0038 (4)
C10.0461 (7)0.0361 (6)0.0327 (6)0.0044 (5)0.0025 (5)0.0070 (5)
C20.0590 (9)0.0539 (8)0.0366 (7)0.0193 (7)0.0031 (6)0.0012 (6)
C30.0437 (7)0.0515 (8)0.0466 (8)0.0067 (6)0.0011 (6)0.0121 (6)
N20.0428 (6)0.0378 (6)0.0409 (6)0.0012 (4)0.0078 (4)0.0057 (4)
C40.0662 (9)0.0374 (7)0.0486 (8)0.0102 (6)0.0171 (7)0.0040 (6)
C50.0715 (9)0.0410 (7)0.0364 (7)0.0097 (6)0.0124 (6)0.0007 (5)
C60.0361 (6)0.0354 (6)0.0389 (7)0.0020 (5)0.0092 (5)0.0028 (5)
N30.0408 (6)0.0356 (5)0.0421 (6)0.0008 (4)0.0037 (4)0.0019 (4)
C70.0326 (6)0.0358 (6)0.0418 (7)0.0022 (5)0.0071 (5)0.0031 (5)
C80.0439 (7)0.0412 (7)0.0479 (8)0.0025 (5)0.0031 (6)0.0025 (6)
C90.0539 (8)0.0384 (7)0.0704 (10)0.0086 (6)0.0045 (7)0.0001 (7)
C100.0580 (9)0.0467 (8)0.0698 (11)0.0122 (7)0.0072 (7)0.0175 (7)
C110.0603 (9)0.0545 (8)0.0469 (8)0.0079 (7)0.0048 (6)0.0120 (7)
N40.0515 (7)0.0417 (6)0.0417 (6)0.0033 (5)0.0072 (5)0.0041 (5)
Geometric parameters (Å, º) top
N1—C11.3332 (18)C5—C61.4040 (18)
N1—H1A0.8600C5—H5A0.9300
N1—H1B0.8600C6—N31.3386 (16)
O1—C11.2328 (16)C6—C71.4693 (18)
C1—C21.5150 (18)C7—N41.3431 (18)
C2—C31.511 (2)C7—C81.3938 (19)
C2—H2A0.9700C8—C91.377 (2)
C2—H2B0.9700C8—H8A0.9300
C3—N21.4566 (18)C9—C101.378 (2)
C3—H3A0.9700C9—H9A0.9300
C3—H3B0.9700C10—C111.376 (2)
N2—C41.3427 (19)C10—H10A0.9300
N2—N31.3464 (16)C11—N41.3389 (19)
C4—C51.362 (2)C11—H11A0.9300
C4—H4A0.9300
C1—N1—H1A120.0C4—C5—C6104.82 (13)
C1—N1—H1B120.0C4—C5—H5A127.6
H1A—N1—H1B120.0C6—C5—H5A127.6
O1—C1—N1123.19 (12)N3—C6—C5110.81 (12)
O1—C1—C2122.26 (12)N3—C6—C7120.56 (11)
N1—C1—C2114.55 (11)C5—C6—C7128.63 (12)
C3—C2—C1114.53 (11)C6—N3—N2104.84 (10)
C3—C2—H2A108.6N4—C7—C8121.89 (13)
C1—C2—H2A108.6N4—C7—C6116.74 (11)
C3—C2—H2B108.6C8—C7—C6121.38 (12)
C1—C2—H2B108.6C9—C8—C7119.08 (14)
H2A—C2—H2B107.6C9—C8—H8A120.5
N2—C3—C2112.93 (12)C7—C8—H8A120.5
N2—C3—H3A109.0C8—C9—C10119.41 (14)
C2—C3—H3A109.0C8—C9—H9A120.3
N2—C3—H3B109.0C10—C9—H9A120.3
C2—C3—H3B109.0C11—C10—C9118.01 (15)
H3A—C3—H3B107.8C11—C10—H10A121.0
C4—N2—N3111.95 (11)C9—C10—H10A121.0
C4—N2—C3127.56 (12)N4—C11—C10123.96 (15)
N3—N2—C3120.47 (11)N4—C11—H11A118.0
N2—C4—C5107.59 (13)C10—C11—H11A118.0
N2—C4—H4A126.2C11—N4—C7117.61 (12)
C5—C4—H4A126.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.968 (2)175
N1—H1B···N4ii0.862.213.055 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC11H12N4O
Mr216.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7446 (15), 8.3517 (17), 8.4804 (17)
α, β, γ (°)97.99 (3), 98.95 (3), 90.40 (3)
V3)536.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.55 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
5019, 2410, 1937
Rint0.029
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.12
No. of reflections2410
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.112.968 (2)175
N1—H1B···N4ii0.862.213.055 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, and supported by the Project of Zhejiang Province Science and Technology Program (grant No. 2008 C21043) and Programs of the Ningbo Natural Science Foundation (grant No.2007 A610053). We thank Ms H.-L. Zhu and Y. Zhou for their help with the structure analysis and Mr W. Xu for the data collection.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRuben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J. M. (2004). Angew. Chem. Int. Ed. 43, 3644–3662.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds