metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(tetra­zolo[1,5-a]pyridine-8-carboxyl­ato-κ2N1,O)cobalt(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 13 May 2009; accepted 20 May 2009; online 23 May 2009)

In the title compound, [Co(C6H3N4O2)2(H2O)2]·2H2O, the CoII atom is located on an inversion center in a slightly distorted octa­hedral environment formed by the O atoms of two water mol­ecules, and the N and O atoms of the chelating tetra­zolo[1,5-a]pyridine-8-carboxyl­ate anions. Hydrogen bonds of the O—H⋯O and O—H⋯N types result in a three-dimensional supra­molecular network.

Related literature

For background to coordination compounds and their synthesis by in situ reaction, see: Chen & Tong (2007[Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162-170.]); Liu et al. (2005[Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298-7300.]); Li et al. (2007[Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527-1529.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H3N4O2)2(H2O)2]·2H2O

  • Mr = 457.24

  • Orthorhombic, P n n a

  • a = 19.041 (4) Å

  • b = 11.694 (2) Å

  • c = 7.5371 (15) Å

  • V = 1678.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.5 × 0.5 × 0.4 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.530, Tmax = 0.667

  • 13120 measured reflections

  • 1482 independent reflections

  • 1203 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.090

  • S = 1.21

  • 1482 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2i 0.825 (18) 1.950 (19) 2.763 (4) 168 (4)
O1W—H1WA⋯O2Wii 0.842 (19) 1.943 (19) 2.776 (5) 170 (5)
O2W—H2WB⋯O1 0.835 (19) 2.04 (3) 2.845 (4) 163 (4)
O2W—H2WA⋯N2iii 0.842 (19) 2.15 (2) 2.981 (5) 171 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination complexes have attracted great attention in recent years. (Liu, et al., 2005). The in-situ reaction which can create new ligand and structure draw much more attention in synthesizing coordination complexes (Li, et al., 2007). Some interesting complexes were ganied by the in-situ reaction. (Chen, et al., 2007).

In the title compound, the cobalt atom the cobalt atom located in the inverse center is six coordinated by two waters and two tetrazolo(1,5-a)pyridine-8-carboxylato, (Fig. 1). Each tetrazolo(1,5-a)pyridine-8-carboxylato chelates to one cobalt atom. One type of water coordinates to the cobalt and the other acts as lattice water. A three dimensional supramolecular net formed by the hydrogen bonds of waters and tetrazolo(1,5-a)pyridine-8-carboxylato ligands intermolecular (Fig. 2).

Related literature top

For background to coordination compounds and their synthesis by in situ reaction, see: Chen & Tong, (2007); Liu et al. (2005); Li et al. (2007).

Experimental top

A mixture of cobalt(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on cobalt(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).Hydrogen atom of water were added by difference Fourier maps and refined with restrainated distance of O—H = 0.85Å with a error of 0.02Å, and the restrainated distance of H—H = 1.35Å with a error of 0.01Å of the same water.

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the coordination of Co atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [ Symmetry codes: (a)-x+1/2,-y,z].
[Figure 2] Fig. 2. The 3D supramolecular net formed by the hydrogen bonds.
Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato- κ2N1,O)cobalt(II) dihydrate top
Crystal data top
[Co(C6H3N4O2)2(H2O)2]·2H2ODx = 1.810 Mg m3
Mr = 457.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 11987 reflections
a = 19.041 (4) Åθ = 3.3–27.8°
b = 11.694 (2) ŵ = 1.09 mm1
c = 7.5371 (15) ÅT = 293 K
V = 1678.3 (6) Å3Block, red
Z = 40.5 × 0.5 × 0.4 mm
F(000) = 932
Data collection top
Rigaku SCXmini
diffractometer
1482 independent reflections
Radiation source: fine-focus sealed tube1203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.530, Tmax = 0.667k = 1313
13120 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0256P)2 + 2.1174P]
where P = (Fo2 + 2Fc2)/3
1482 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co(C6H3N4O2)2(H2O)2]·2H2OV = 1678.3 (6) Å3
Mr = 457.24Z = 4
Orthorhombic, PnnaMo Kα radiation
a = 19.041 (4) ŵ = 1.09 mm1
b = 11.694 (2) ÅT = 293 K
c = 7.5371 (15) Å0.5 × 0.5 × 0.4 mm
Data collection top
Rigaku SCXmini
diffractometer
1482 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1203 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 0.667Rint = 0.081
13120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.34 e Å3
1482 reflectionsΔρmin = 0.54 e Å3
148 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.00000.86713 (10)0.0185 (3)
O10.20211 (15)0.1011 (2)0.6721 (4)0.0258 (7)
O1W0.20777 (17)0.1069 (3)1.0644 (4)0.0282 (8)
H1WB0.187 (2)0.167 (2)1.037 (5)0.028 (14)*
H1WA0.234 (2)0.120 (4)1.151 (5)0.034 (16)*
O20.12294 (15)0.2126 (2)0.5359 (4)0.0310 (8)
N10.15291 (19)0.0903 (3)0.8639 (4)0.0220 (8)
N20.1335 (2)0.1860 (3)0.9493 (5)0.0307 (10)
N30.0650 (2)0.2019 (3)0.9438 (5)0.0315 (10)
N40.03825 (19)0.1111 (3)0.8530 (5)0.0236 (9)
C10.1390 (2)0.1307 (3)0.6326 (5)0.0220 (10)
C20.0793 (2)0.0595 (3)0.7064 (6)0.0199 (9)
C30.0093 (2)0.0832 (4)0.6782 (6)0.0251 (11)
H3A0.00220.15000.61800.030*
C40.0468 (2)0.0108 (3)0.7364 (6)0.0276 (11)
H4A0.09330.03180.71650.033*
C50.0318 (2)0.0885 (4)0.8204 (6)0.0286 (11)
H5A0.06700.13910.85470.034*
C60.0929 (2)0.0430 (4)0.8022 (6)0.0209 (10)
O2W0.28936 (19)0.1261 (3)0.3682 (4)0.0363 (9)
H2WB0.259 (2)0.108 (4)0.444 (5)0.051 (19)*
H2WA0.312 (2)0.182 (3)0.408 (6)0.042 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0154 (5)0.0195 (5)0.0206 (5)0.0011 (3)0.0000.000
O10.0205 (17)0.0295 (17)0.0274 (18)0.0008 (13)0.0002 (13)0.0101 (14)
O1W0.029 (2)0.0236 (18)0.032 (2)0.0111 (14)0.0028 (15)0.0049 (14)
O20.0291 (19)0.0258 (18)0.038 (2)0.0023 (14)0.0044 (15)0.0131 (15)
N10.023 (2)0.0189 (18)0.024 (2)0.0013 (15)0.0020 (15)0.0079 (15)
N20.033 (2)0.023 (2)0.036 (2)0.0045 (17)0.0012 (18)0.0059 (18)
N30.033 (2)0.027 (2)0.035 (2)0.0027 (17)0.0033 (18)0.0082 (18)
N40.023 (2)0.0206 (19)0.027 (2)0.0040 (16)0.0012 (16)0.0039 (16)
C10.028 (3)0.019 (2)0.019 (2)0.0023 (19)0.0032 (19)0.0003 (18)
C20.022 (2)0.018 (2)0.020 (2)0.0037 (18)0.0049 (18)0.0002 (18)
C30.028 (3)0.023 (2)0.024 (3)0.0014 (19)0.0023 (19)0.0004 (19)
C40.019 (2)0.034 (3)0.029 (3)0.0030 (19)0.0016 (19)0.003 (2)
C50.022 (3)0.031 (3)0.033 (3)0.008 (2)0.002 (2)0.003 (2)
C60.019 (2)0.022 (2)0.021 (2)0.0030 (18)0.0032 (18)0.0008 (19)
O2W0.035 (2)0.042 (2)0.031 (2)0.0088 (17)0.0054 (16)0.0055 (16)
Geometric parameters (Å, º) top
Co1—O12.095 (3)N3—N41.362 (5)
Co1—O1i2.095 (3)N4—C61.365 (5)
Co1—O1W2.102 (3)N4—C51.382 (6)
Co1—O1Wi2.102 (3)C1—C21.516 (6)
Co1—N12.129 (4)C2—C31.378 (6)
Co1—N1i2.129 (4)C2—C61.424 (6)
O1—C11.286 (5)C3—C41.432 (6)
O1W—H1WB0.825 (18)C3—H3A0.9300
O1W—H1WA0.842 (19)C4—C51.353 (6)
O2—C11.242 (5)C4—H4A0.9300
N1—N21.342 (5)C5—H5A0.9300
N1—C61.351 (5)O2W—H2WB0.835 (19)
N2—N31.318 (5)O2W—H2WA0.842 (19)
O1—Co1—O1i90.89 (16)N2—N3—N4106.0 (3)
O1—Co1—O1W89.66 (13)N3—N4—C6108.1 (4)
O1i—Co1—O1W176.49 (12)N3—N4—C5126.8 (4)
O1—Co1—O1Wi176.49 (12)C6—N4—C5125.1 (4)
O1i—Co1—O1Wi89.66 (13)O2—C1—O1125.0 (4)
O1W—Co1—O1Wi89.99 (18)O2—C1—C2117.0 (4)
O1—Co1—N183.91 (12)O1—C1—C2117.9 (4)
O1i—Co1—N195.17 (12)C3—C2—C6115.1 (4)
O1W—Co1—N188.33 (13)C3—C2—C1124.0 (4)
O1Wi—Co1—N192.58 (13)C6—C2—C1120.8 (4)
O1—Co1—N1i95.17 (12)C2—C3—C4123.8 (4)
O1i—Co1—N1i83.91 (12)C2—C3—H3A118.1
O1W—Co1—N1i92.58 (13)C4—C3—H3A118.1
O1Wi—Co1—N1i88.33 (13)C5—C4—C3119.6 (4)
N1—Co1—N1i178.70 (19)C5—C4—H4A120.2
C1—O1—Co1136.2 (3)C3—C4—H4A120.2
Co1—O1W—H1WB120 (3)C4—C5—N4116.8 (4)
Co1—O1W—H1WA115 (3)C4—C5—H5A121.6
H1WB—O1W—H1WA109 (2)N4—C5—H5A121.6
N2—N1—C6105.8 (3)N1—C6—N4108.0 (4)
N2—N1—Co1130.3 (3)N1—C6—C2132.4 (4)
C6—N1—Co1122.3 (3)N4—C6—C2119.6 (4)
N3—N2—N1112.1 (3)H2WB—O2W—H2WA107 (3)
O1i—Co1—O1—C1123.8 (4)O2—C1—C2—C32.7 (6)
O1W—Co1—O1—C159.7 (4)O1—C1—C2—C3178.3 (4)
O1Wi—Co1—O1—C125 (2)O2—C1—C2—C6173.1 (4)
N1—Co1—O1—C128.7 (4)O1—C1—C2—C65.9 (6)
N1i—Co1—O1—C1152.2 (4)C6—C2—C3—C41.1 (6)
O1—Co1—N1—N2174.9 (4)C1—C2—C3—C4174.9 (4)
O1i—Co1—N1—N284.5 (4)C2—C3—C4—C51.7 (7)
O1W—Co1—N1—N295.3 (4)C3—C4—C5—N43.2 (6)
O1Wi—Co1—N1—N25.3 (4)N3—N4—C5—C4176.0 (4)
N1i—Co1—N1—N2129.7 (4)C6—N4—C5—C42.1 (7)
O1—Co1—N1—C621.2 (3)N2—N1—C6—N40.4 (5)
O1i—Co1—N1—C6111.5 (3)Co1—N1—C6—N4166.9 (3)
O1W—Co1—N1—C668.6 (3)N2—N1—C6—C2178.1 (5)
O1Wi—Co1—N1—C6158.6 (3)Co1—N1—C6—C210.8 (7)
N1i—Co1—N1—C666.4 (3)N3—N4—C6—N11.1 (5)
C6—N1—N2—N30.4 (5)C5—N4—C6—N1177.4 (4)
Co1—N1—N2—N3166.3 (3)N3—N4—C6—C2179.1 (4)
N1—N2—N3—N41.1 (5)C5—N4—C6—C20.7 (6)
N2—N3—N4—C61.3 (4)C3—C2—C6—N1175.3 (4)
N2—N3—N4—C5177.1 (4)C1—C2—C6—N18.6 (7)
Co1—O1—C1—O2162.2 (3)C3—C2—C6—N42.2 (6)
Co1—O1—C1—C218.9 (6)C1—C2—C6—N4173.9 (4)
Symmetry code: (i) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2ii0.83 (2)1.95 (2)2.763 (4)168 (4)
O1W—H1WA···O2Wiii0.84 (2)1.94 (2)2.776 (5)170 (5)
O2W—H2WB···O10.84 (2)2.04 (3)2.845 (4)163 (4)
O2W—H2WA···N2iv0.84 (2)2.15 (2)2.981 (5)171 (4)
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C6H3N4O2)2(H2O)2]·2H2O
Mr457.24
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)293
a, b, c (Å)19.041 (4), 11.694 (2), 7.5371 (15)
V3)1678.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.5 × 0.5 × 0.4
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.530, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
13120, 1482, 1203
Rint0.081
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.090, 1.21
No. of reflections1482
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.54

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2i0.825 (18)1.950 (19)2.763 (4)168 (4)
O1W—H1WA···O2Wii0.842 (19)1.943 (19)2.776 (5)170 (5)
O2W—H2WB···O10.835 (19)2.04 (3)2.845 (4)163 (4)
O2W—H2WA···N2iii0.842 (19)2.15 (2)2.981 (5)171 (4)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529.  Web of Science CSD CrossRef Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds