organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-3,3-di­chloro-1-methyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide

aGovernment College University, Department of Chemistry, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 May 2009; accepted 21 May 2009; online 29 May 2009)

The monomeric title compound, C9H6BrCl2NO3S, has an envelope-shaped thia­zine ring with the S atom 0.879 (9) Å out of the mean square plane of the envelope. The ππ distances between the centroids of the heterocyclic rings are 4.191 (5) and 4.110 (5) Å. The closest intermolecular inter­actions between the O atoms of the carbonyl and sulfonyl groups with Br and Cl atoms are 2.987 (7) and 2.992 (8) Å, respectively.

Related literature

For halogination (chlorination or bromination) of 1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.]); Shafiq, Tahir, Khan, Ahmad et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430.]); Shafiq, Tahir, Khan, Arshad & Asghar (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009). Acta Cryst. E65, o1182.]); Shafiq, Tahir, Khan, Arshad & Safdar (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6BrCl2NO3S

  • Mr = 359.02

  • Monoclinic, P 21 /n

  • a = 7.0285 (9) Å

  • b = 14.865 (2) Å

  • c = 11.9739 (18) Å

  • β = 92.418 (5)°

  • V = 1249.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.88 mm−1

  • T = 296 K

  • 0.26 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa-APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.529, Tmax = 0.626

  • 11409 measured reflections

  • 2317 independent reflections

  • 1595 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.249

  • S = 1.09

  • 2317 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 2.07 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2 0.9600 2.3400 2.834 (14) 112.00

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of the synthesized derivatives of the benzothiazine molecules which have halogen substitutions (Shafiq et al., 2008; Shafiq, Tahir, Khan Ahmad et al., 2009; Shafiq, Tahir, Khan, Arshad & Asghar, 2009; Shafiq, Tahir, Khan, Arshad & Safdar, 2009). In continuation to the halogenation of our synthesized benzothiazines, we herein report the title compound (I), (Fig. 1).

(I) is closely related to the crystal structure of 3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide, (II), (Shafiq, Tahir, Khan, Ahmad et al., 2009). (I) differs from (II) due to methyl moiety at N-atom instead of ethyl and the attachement of Br-atom to the benzene ring. The title compound is from one of those compounds which have high order of steric hinderences. This is why, the R-values remain higher.

In (I), the heterocyclic ring A (C1/C6/N1/S1/C8/C9) is in the twisted form, with the maximum puckering amplitude QT = 0.604 (7) Å (Cremer & Pople, 1975). The molecules are stabilized due to weak intramolecular H-bonding (Table 1) and ππ interactions between the centroids (CgA) of ring A. The distance between CgA···CgAi [symmetry code: i = 1 - x, 1 - y, 1 - z] is 4.191 (5) Å, whereas it is 4.110 (5) Å for CgA···CgAii [symmetry code: i = 1 - x, 1 - y, 1 - z]. The stacking of molecules is shown in Fig 2. The Br-atom is at a distance of -0.07 (1) Å from the mean square plane of benzene ring B (C1—C6) and the S-atom is at a distance of -0.879 (9) Å from the mean square plane of group C (C1/C6/N1/C8/C9).

Related literature top

For ring-puckering analysis, see: Cremer & Pople (1975). For our previous work, see: Shafiq et al. (2008); Shafiq, Tahir, Khan, Ahmad et al. (2009); Shafiq, Tahir, Khan, Arshad & Asghar (2009); Shafiq, Tahir, Khan, Arshad & Safdar (2009).

Experimental top

The title compound was prepared following the method as reported in Shafiq, Tahir, Khan, Ahmad et al. (2009). A mixture was prepared from 6-bromo-1-methyl-1 H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (250 mg, 0.862 mmol) (Shafiq, Tahir, Khan, Arshad & Asghar, 2009), N-Chloro Succinamide (225.85 mg, 1.724 mmol) and Benzoylperoxide (11.99 mg, 0.0495 mmol) in Carbon Tetra Chloride (10 ml). The mixture was heated under reflux (353 K) for two h. CCl4 was evaporated under reduced pressure and the residue obtained was recrystallized from mixture of ethanol:ethyl acetate (1:1).

Refinement top

H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aryl and methyl H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aryl and 1.5 for methyl H atoms.

In difference Fourier map, three peaks of electron density 2.07, 1.87 and 1.86 e Å-3 exist which are at distance of 1.09, 1.09 and 1.42 Å from the BR1, BR1 and CL2, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules are stacked up with ππ interaction between the heterocyclic rings.
6-Bromo-3,3-dichloro-1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide top
Crystal data top
C9H6BrCl2NO3SF(000) = 704
Mr = 359.02Dx = 1.908 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2317 reflections
a = 7.0285 (9) Åθ = 2.7–25.5°
b = 14.865 (2) ŵ = 3.88 mm1
c = 11.9739 (18) ÅT = 296 K
β = 92.418 (5)°Needle, yellow
V = 1249.9 (3) Å30.26 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
2317 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.80 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1718
Tmin = 0.529, Tmax = 0.626l = 1414
11409 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1412P)2 + 3.7083P]
where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.000
155 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C9H6BrCl2NO3SV = 1249.9 (3) Å3
Mr = 359.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0285 (9) ŵ = 3.88 mm1
b = 14.865 (2) ÅT = 296 K
c = 11.9739 (18) Å0.26 × 0.14 × 0.12 mm
β = 92.418 (5)°
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
2317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1595 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.626Rint = 0.048
11409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.09Δρmax = 2.07 e Å3
2317 reflectionsΔρmin = 0.46 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74792 (15)0.56286 (7)0.70311 (9)0.0672 (4)
Cl10.7616 (5)0.06220 (15)0.4704 (3)0.0880 (13)
Cl20.4591 (4)0.1801 (2)0.3853 (3)0.0812 (11)
S10.8566 (4)0.20955 (15)0.3260 (2)0.0605 (9)
O11.0377 (10)0.2088 (5)0.3836 (7)0.073 (3)
O20.8231 (13)0.1591 (5)0.2266 (7)0.092 (3)
O30.7221 (14)0.2086 (5)0.6253 (6)0.086 (3)
N10.7709 (10)0.3103 (5)0.3049 (5)0.047 (3)
C10.7428 (11)0.3339 (5)0.5055 (7)0.041 (2)
C20.7384 (11)0.3928 (6)0.5972 (7)0.046 (3)
C30.7472 (11)0.4837 (5)0.5800 (7)0.045 (3)
C40.7598 (12)0.5177 (5)0.4732 (8)0.050 (3)
C50.7673 (12)0.4611 (5)0.3832 (7)0.046 (3)
C60.7602 (10)0.3681 (5)0.3979 (6)0.037 (2)
C70.7331 (16)0.3430 (8)0.1909 (7)0.069 (4)
C80.7023 (14)0.1722 (5)0.4321 (8)0.055 (3)
C90.7248 (12)0.2370 (6)0.5326 (7)0.048 (3)
H20.729510.370070.669130.0547*
H40.763190.579570.462340.0596*
H50.777150.484840.311820.0551*
H7A0.837030.380080.169170.1043*
H7B0.719690.292730.140860.1043*
H7C0.617670.377620.187860.1043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0732 (8)0.0623 (7)0.0664 (7)0.0014 (4)0.0073 (5)0.0331 (5)
Cl10.140 (3)0.0300 (12)0.094 (2)0.0046 (13)0.006 (2)0.0024 (12)
Cl20.0585 (16)0.098 (2)0.086 (2)0.0217 (14)0.0094 (14)0.0057 (16)
S10.0730 (18)0.0455 (13)0.0641 (15)0.0053 (11)0.0174 (13)0.0116 (11)
O10.047 (4)0.076 (5)0.096 (5)0.017 (3)0.005 (4)0.008 (4)
O20.136 (7)0.063 (5)0.078 (5)0.002 (5)0.028 (5)0.035 (4)
O30.164 (8)0.048 (4)0.046 (4)0.001 (4)0.006 (4)0.012 (3)
N10.075 (5)0.036 (4)0.031 (4)0.003 (3)0.005 (3)0.002 (3)
C10.045 (4)0.034 (4)0.043 (4)0.000 (3)0.002 (3)0.001 (3)
C20.056 (5)0.048 (5)0.033 (4)0.002 (4)0.001 (4)0.001 (4)
C30.051 (5)0.034 (4)0.049 (5)0.000 (3)0.003 (4)0.014 (4)
C40.057 (5)0.031 (4)0.061 (6)0.003 (4)0.008 (4)0.003 (4)
C50.068 (6)0.034 (4)0.037 (4)0.001 (4)0.005 (4)0.001 (3)
C60.041 (4)0.042 (4)0.029 (4)0.003 (3)0.002 (3)0.001 (3)
C70.102 (8)0.073 (7)0.033 (5)0.014 (6)0.002 (5)0.001 (4)
C80.082 (7)0.028 (4)0.054 (5)0.006 (4)0.002 (5)0.001 (4)
C90.059 (5)0.041 (4)0.044 (5)0.000 (4)0.001 (4)0.003 (4)
Geometric parameters (Å, º) top
Br1—C31.886 (8)C1—C91.483 (12)
Cl1—C81.744 (8)C2—C31.369 (12)
Cl2—C81.780 (10)C3—C41.381 (12)
S1—O11.422 (8)C4—C51.370 (12)
S1—O21.418 (8)C5—C61.395 (11)
S1—N11.630 (8)C8—C91.544 (12)
S1—C81.793 (10)C2—H20.9300
O3—C91.189 (11)C4—H40.9300
N1—C61.411 (10)C5—H50.9300
N1—C71.463 (11)C7—H7A0.9600
C1—C21.406 (12)C7—H7B0.9600
C1—C61.395 (11)C7—H7C0.9600
Br1···O3i2.987 (7)C3···C4ii3.593 (12)
Br1···C5ii3.741 (9)C3···C4iii3.550 (12)
Br1···C5iii3.620 (9)C3···C5iii3.519 (11)
Br1···H7Cii3.0600C4···O2ix3.219 (12)
Cl1···O13.125 (8)C4···C3ii3.593 (12)
Cl1···O23.300 (9)C4···C3iii3.550 (12)
Cl1···O32.880 (8)C4···C4iii3.451 (12)
Cl2···O1iv2.992 (8)C5···Br1ii3.741 (9)
Cl2···O23.266 (9)C5···Br1iii3.620 (9)
Cl2···O33.377 (9)C5···O2ix3.275 (11)
Cl2···N13.107 (8)C5···C3iii3.519 (11)
Cl2···C63.505 (8)C6···Cl23.505 (8)
Cl2···H2v3.0800C5···H7C2.8100
O1···Cl13.125 (8)C5···H7A2.8900
O1···Cl2vi2.992 (8)C7···H52.5700
O1···C13.184 (11)H2···O32.4600
O2···Cl13.300 (9)H2···Cl2x3.0800
O2···Cl23.266 (9)H4···O2ix2.6000
O2···C4vii3.219 (12)H5···C72.5700
O2···C5vii3.275 (11)H5···H7A2.3600
O3···Cl23.377 (9)H5···H7C2.4200
O3···Cl12.880 (8)H5···O2ix2.7200
O3···Br1viii2.987 (7)H7A···C52.8900
O2···H7B2.3400H7A···H52.3600
O2···H5vii2.7200H7B···O22.3400
O2···H4vii2.6000H7C···C52.8100
O3···H22.4600H7C···H52.4200
N1···Cl23.107 (8)H7C···Br1ii3.0600
C1···O13.184 (11)
O1—S1—O2121.1 (5)Cl1—C8—Cl2111.1 (5)
O1—S1—N1113.6 (4)Cl1—C8—S1109.4 (5)
O1—S1—C8102.1 (5)Cl1—C8—C9111.4 (6)
O2—S1—N1108.0 (4)Cl2—C8—S1111.0 (5)
O2—S1—C8110.3 (5)Cl2—C8—C9105.6 (6)
N1—S1—C899.4 (4)S1—C8—C9108.3 (6)
S1—N1—C6118.0 (5)O3—C9—C1123.7 (8)
S1—N1—C7120.1 (6)O3—C9—C8120.1 (8)
C6—N1—C7121.4 (7)C1—C9—C8116.2 (7)
C2—C1—C6120.0 (7)C1—C2—H2120.00
C2—C1—C9115.4 (7)C3—C2—H2120.00
C6—C1—C9124.6 (7)C3—C4—H4120.00
C1—C2—C3119.7 (8)C5—C4—H4120.00
Br1—C3—C2119.8 (6)C4—C5—H5120.00
Br1—C3—C4119.8 (6)C6—C5—H5120.00
C2—C3—C4120.4 (8)N1—C7—H7A109.00
C3—C4—C5120.6 (7)N1—C7—H7B109.00
C4—C5—C6120.4 (7)N1—C7—H7C109.00
N1—C6—C1121.1 (7)H7A—C7—H7B109.00
N1—C6—C5120.0 (7)H7A—C7—H7C109.00
C1—C6—C5118.9 (7)H7B—C7—H7C109.00
O1—S1—N1—C652.8 (7)C2—C1—C6—N1178.0 (7)
O1—S1—N1—C7118.5 (8)C2—C1—C6—C51.9 (11)
O2—S1—N1—C6169.9 (6)C9—C1—C6—N13.0 (12)
O2—S1—N1—C718.7 (9)C9—C1—C6—C5177.1 (8)
C8—S1—N1—C654.9 (7)C2—C1—C9—O35.9 (13)
C8—S1—N1—C7133.8 (7)C2—C1—C9—C8172.1 (7)
O1—S1—C8—Cl164.1 (6)C6—C1—C9—O3175.1 (9)
O1—S1—C8—Cl2173.0 (5)C6—C1—C9—C86.9 (12)
O1—S1—C8—C957.5 (7)C1—C2—C3—Br1178.4 (6)
O2—S1—C8—Cl165.9 (6)C1—C2—C3—C40.2 (12)
O2—S1—C8—Cl257.0 (6)Br1—C3—C4—C5177.3 (6)
O2—S1—C8—C9172.5 (6)C2—C3—C4—C51.2 (12)
N1—S1—C8—Cl1179.2 (5)C3—C4—C5—C60.7 (13)
N1—S1—C8—Cl256.3 (5)C4—C5—C6—N1179.1 (7)
N1—S1—C8—C959.3 (6)C4—C5—C6—C10.8 (12)
S1—N1—C6—C127.0 (10)Cl1—C8—C9—O321.8 (12)
S1—N1—C6—C5152.9 (6)Cl1—C8—C9—C1160.1 (6)
C7—N1—C6—C1161.8 (8)Cl2—C8—C9—O398.9 (9)
C7—N1—C6—C518.3 (11)Cl2—C8—C9—C179.2 (8)
C6—C1—C2—C31.4 (12)S1—C8—C9—O3142.1 (8)
C9—C1—C2—C3177.7 (7)S1—C8—C9—C139.8 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x1/2, y+1/2, z1/2; (vi) x+1, y, z; (vii) x+3/2, y1/2, z+1/2; (viii) x+3/2, y1/2, z+3/2; (ix) x+3/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O20.96002.34002.834 (14)112.00

Experimental details

Crystal data
Chemical formulaC9H6BrCl2NO3S
Mr359.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.0285 (9), 14.865 (2), 11.9739 (18)
β (°) 92.418 (5)
V3)1249.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.88
Crystal size (mm)0.26 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa-APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.529, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
11409, 2317, 1595
Rint0.048
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.249, 1.09
No. of reflections2317
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.07, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O20.96002.34002.834 (14)112.00
 

Acknowledgements

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120567-PS2-276).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009). Acta Cryst. E65, o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds