organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-1-(phenyl­sulfin­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry Pukyong National University 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 25 May 2009; accepted 26 May 2009; online 29 May 2009)

In the title compound, C24H16O2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the naphthofuran fragment; the phenyl ring is almost perpendicular to this plane [82.34 (5)°]. The 2-phenyl ring is rotated out of the naphthofuran plane making a dihedral angle of 48.21 (6)°. The crystal structure shows ππ inter­actions between the central benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.516 (3) Å], as well as non-classical C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar naphtho[2,1-b]furan derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731-o1732.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.]). For the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16O2S

  • Mr = 368.43

  • Triclinic, [P \overline 1]

  • a = 9.2262 (7) Å

  • b = 10.3430 (8) Å

  • c = 10.4296 (8) Å

  • α = 78.298 (1)°

  • β = 86.849 (1)°

  • γ = 67.506 (1)°

  • V = 900.15 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6736 measured reflections

  • 3140 independent reflections

  • 2602 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.06

  • 3140 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.95 2.59 3.488 (3) 158
C18—H18⋯O2ii 0.95 2.57 3.323 (3) 137
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The naphthofuran ring system has attracted widespread interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of naphtho[2,1-b]furan analogues, viz. 2-methyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2007) and 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Choi et al., 2008). We present the crystal structure of the title compound (I), 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.015 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle in (I) formed by the plane of the naphthofuran ring and the plane of 2-phenyl ring is 48.21 (6)°, and the phenyl ring (C19-C24) with 82.34 (5)° lies toward the naphthofuran plane. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the central benzene rings from the adjacent molecules. The Cg···Cgiii distance is 3.516 (3) Å (Cg is the centroide of the C2/C3/C8/C9/C10/C11 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by weak non-classical intermolecular C–H···O hydrogen bonds, the first between an aromatic H atom of the naphthofuran fragment and the SO unit, the second between an aromatic H atom of 2-phenyl ring and the SO unit, respectively (Table 1 and Fig. 2; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar naphtho[2,1-b]furan derivatives, see: Choi et al. (2007, 2008). For the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005).

Experimental top

The 77% 3-chloroperoxybenzoic acid (77%, 247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-phenyl-1-(phenylsulfanyl)naphtho[2,1-b]furan (352 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 462-463 K; Rf = 0.54 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title χompound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq (C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The ππ and C–H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.]
2-Phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan top
Crystal data top
C24H16O2SZ = 2
Mr = 368.43F(000) = 384
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2262 (7) ÅCell parameters from 3903 reflections
b = 10.3430 (8) Åθ = 2.2–28.1°
c = 10.4296 (8) ŵ = 0.20 mm1
α = 78.298 (1)°T = 173 K
β = 86.849 (1)°Block, colorless
γ = 67.506 (1)°0.30 × 0.20 × 0.10 mm
V = 900.15 (12) Å3
Data collection top
Bruker SMART CCD
diffractometer
2602 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
Detector resolution: 10.0 pixels mm-1h = 1010
ϕ and ω scansk = 1212
6736 measured reflectionsl = 1212
3140 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.4516P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C24H16O2Sγ = 67.506 (1)°
Mr = 368.43V = 900.15 (12) Å3
Triclinic, P1Z = 2
a = 9.2262 (7) ÅMo Kα radiation
b = 10.3430 (8) ŵ = 0.20 mm1
c = 10.4296 (8) ÅT = 173 K
α = 78.298 (1)°0.30 × 0.20 × 0.10 mm
β = 86.849 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2602 reflections with I > 2σ(I)
6736 measured reflectionsRint = 0.076
3140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3140 reflectionsΔρmin = 0.36 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.92526 (5)0.67298 (6)0.63521 (5)0.02249 (16)
O10.55628 (15)0.80588 (16)0.40427 (15)0.0287 (4)
O21.01571 (15)0.51840 (16)0.68794 (15)0.0304 (4)
C10.7484 (2)0.6976 (2)0.5575 (2)0.0217 (4)
C20.6230 (2)0.6466 (2)0.5980 (2)0.0225 (5)
C30.5963 (2)0.5480 (2)0.7043 (2)0.0247 (5)
C40.7034 (2)0.4667 (2)0.8087 (2)0.0288 (5)
H40.80130.47670.81140.035*
C50.6685 (3)0.3735 (3)0.9063 (2)0.0369 (6)
H50.74230.31950.97600.044*
C60.5244 (3)0.3568 (3)0.9045 (3)0.0409 (6)
H60.50060.29280.97330.049*
C70.4196 (3)0.4323 (3)0.8042 (3)0.0367 (6)
H70.32310.41940.80330.044*
C80.4506 (2)0.5296 (2)0.7011 (2)0.0304 (5)
C90.3413 (2)0.6054 (3)0.5950 (3)0.0350 (6)
H90.24620.59000.59460.042*
C100.3676 (2)0.6990 (3)0.4943 (2)0.0341 (6)
H100.29360.74990.42420.041*
C110.5109 (2)0.7163 (2)0.4998 (2)0.0265 (5)
C120.7040 (2)0.7901 (2)0.4412 (2)0.0240 (5)
C130.7758 (2)0.8777 (2)0.3541 (2)0.0245 (5)
C140.6902 (3)1.0219 (2)0.3089 (2)0.0310 (5)
H140.58431.06320.33390.037*
C150.7568 (3)1.1061 (2)0.2284 (2)0.0355 (6)
H150.69751.20490.19870.043*
C160.9113 (3)1.0456 (3)0.1907 (2)0.0362 (6)
H160.95791.10310.13500.043*
C170.9966 (3)0.9026 (3)0.2340 (2)0.0332 (5)
H171.10200.86180.20760.040*
C180.9314 (2)0.8173 (2)0.3153 (2)0.0280 (5)
H180.99140.71850.34480.034*
C190.8432 (2)0.7532 (2)0.7740 (2)0.0233 (5)
C200.7332 (2)0.8915 (2)0.7556 (2)0.0296 (5)
H200.69460.94290.67000.036*
C210.6802 (3)0.9539 (3)0.8632 (3)0.0376 (6)
H210.60401.04850.85190.045*
C220.7381 (3)0.8787 (3)0.9879 (2)0.0369 (6)
H220.70050.92181.06170.044*
C230.8501 (3)0.7414 (3)1.0049 (2)0.0344 (5)
H230.89010.69041.09010.041*
C240.9038 (2)0.6785 (2)0.8972 (2)0.0286 (5)
H240.98170.58460.90800.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0174 (2)0.0248 (3)0.0242 (3)0.0081 (2)0.00033 (18)0.0022 (2)
O10.0238 (7)0.0305 (9)0.0299 (9)0.0084 (6)0.0053 (6)0.0044 (7)
O20.0223 (7)0.0265 (9)0.0369 (10)0.0036 (6)0.0003 (6)0.0050 (7)
C10.0188 (9)0.0223 (11)0.0238 (11)0.0064 (8)0.0017 (8)0.0074 (9)
C20.0193 (9)0.0216 (11)0.0274 (12)0.0063 (8)0.0018 (8)0.0095 (9)
C30.0232 (10)0.0224 (11)0.0308 (12)0.0091 (8)0.0083 (8)0.0112 (9)
C40.0261 (11)0.0277 (12)0.0332 (13)0.0113 (9)0.0050 (9)0.0062 (10)
C50.0389 (12)0.0335 (14)0.0367 (14)0.0142 (10)0.0070 (10)0.0046 (11)
C60.0474 (14)0.0377 (15)0.0431 (16)0.0235 (12)0.0206 (12)0.0106 (12)
C70.0319 (12)0.0411 (15)0.0481 (16)0.0229 (11)0.0184 (11)0.0193 (12)
C80.0244 (10)0.0321 (13)0.0389 (14)0.0115 (9)0.0105 (9)0.0172 (11)
C90.0197 (10)0.0421 (15)0.0493 (16)0.0135 (10)0.0068 (10)0.0207 (12)
C100.0211 (10)0.0397 (14)0.0417 (15)0.0075 (10)0.0035 (9)0.0158 (11)
C110.0225 (10)0.0256 (12)0.0316 (13)0.0071 (9)0.0020 (8)0.0104 (9)
C120.0207 (9)0.0244 (11)0.0257 (12)0.0053 (8)0.0019 (8)0.0085 (9)
C130.0281 (10)0.0268 (12)0.0196 (11)0.0105 (9)0.0003 (8)0.0064 (9)
C140.0325 (11)0.0265 (13)0.0302 (13)0.0064 (9)0.0002 (9)0.0072 (10)
C150.0466 (13)0.0213 (12)0.0367 (14)0.0115 (10)0.0019 (10)0.0036 (10)
C160.0468 (13)0.0354 (14)0.0331 (14)0.0249 (11)0.0010 (10)0.0027 (11)
C170.0305 (11)0.0376 (14)0.0325 (13)0.0144 (10)0.0019 (9)0.0064 (11)
C180.0290 (11)0.0247 (12)0.0282 (12)0.0075 (9)0.0010 (9)0.0051 (9)
C190.0208 (10)0.0268 (12)0.0257 (12)0.0128 (9)0.0000 (8)0.0045 (9)
C200.0261 (10)0.0292 (13)0.0314 (13)0.0080 (9)0.0063 (9)0.0045 (10)
C210.0298 (12)0.0363 (14)0.0453 (16)0.0060 (10)0.0018 (10)0.0173 (12)
C220.0374 (13)0.0480 (16)0.0337 (14)0.0202 (11)0.0059 (10)0.0199 (12)
C230.0453 (13)0.0397 (14)0.0251 (13)0.0252 (11)0.0016 (10)0.0027 (10)
C240.0335 (11)0.0244 (12)0.0288 (13)0.0137 (9)0.0030 (9)0.0009 (9)
Geometric parameters (Å, º) top
S—O21.4926 (15)C12—C131.464 (3)
S—C11.7690 (19)C13—C141.388 (3)
S—C191.801 (2)C13—C181.402 (3)
O1—C121.376 (2)C14—C151.377 (3)
O1—C111.380 (3)C14—H140.9500
C1—C121.356 (3)C15—C161.391 (3)
C1—C21.455 (3)C15—H150.9500
C2—C111.373 (3)C16—C171.375 (3)
C2—C31.426 (3)C16—H160.9500
C3—C41.407 (3)C17—C181.381 (3)
C3—C81.431 (3)C17—H170.9500
C4—C51.369 (3)C18—H180.9500
C4—H40.9500C19—C241.380 (3)
C5—C61.406 (3)C19—C201.383 (3)
C5—H50.9500C20—C211.381 (3)
C6—C71.357 (4)C20—H200.9500
C6—H60.9500C21—C221.389 (4)
C7—C81.414 (3)C21—H210.9500
C7—H70.9500C22—C231.382 (3)
C8—C91.423 (3)C22—H220.9500
C9—C101.355 (4)C23—C241.386 (3)
C9—H90.9500C23—H230.9500
C10—C111.406 (3)C24—H240.9500
C10—H100.9500
O2—S—C1110.64 (9)C1—C12—C13133.87 (18)
O2—S—C19106.60 (9)O1—C12—C13115.97 (18)
C1—S—C1998.59 (9)C14—C13—C18119.2 (2)
C12—O1—C11106.29 (16)C14—C13—C12120.17 (18)
C12—C1—C2107.88 (17)C18—C13—C12120.62 (19)
C12—C1—S119.06 (15)C15—C14—C13120.8 (2)
C2—C1—S132.80 (16)C15—C14—H14119.6
C11—C2—C3119.15 (18)C13—C14—H14119.6
C11—C2—C1104.07 (19)C14—C15—C16119.7 (2)
C3—C2—C1136.75 (18)C14—C15—H15120.2
C4—C3—C2124.79 (18)C16—C15—H15120.2
C4—C3—C8118.6 (2)C17—C16—C15119.9 (2)
C2—C3—C8116.6 (2)C17—C16—H16120.1
C5—C4—C3120.9 (2)C15—C16—H16120.1
C5—C4—H4119.5C16—C17—C18121.0 (2)
C3—C4—H4119.5C16—C17—H17119.5
C4—C5—C6120.6 (2)C18—C17—H17119.5
C4—C5—H5119.7C17—C18—C13119.4 (2)
C6—C5—H5119.7C17—C18—H18120.3
C7—C6—C5119.8 (2)C13—C18—H18120.3
C7—C6—H6120.1C24—C19—C20121.2 (2)
C5—C6—H6120.1C24—C19—S118.22 (16)
C6—C7—C8121.5 (2)C20—C19—S120.25 (17)
C6—C7—H7119.2C21—C20—C19119.0 (2)
C8—C7—H7119.2C21—C20—H20120.5
C7—C8—C9121.0 (2)C19—C20—H20120.5
C7—C8—C3118.5 (2)C20—C21—C22120.2 (2)
C9—C8—C3120.5 (2)C20—C21—H21119.9
C10—C9—C8122.5 (2)C22—C21—H21119.9
C10—C9—H9118.8C23—C22—C21120.2 (2)
C8—C9—H9118.8C23—C22—H22119.9
C9—C10—C11116.1 (2)C21—C22—H22119.9
C9—C10—H10122.0C22—C23—C24119.8 (2)
C11—C10—H10122.0C22—C23—H23120.1
C2—C11—O1111.62 (17)C24—C23—H23120.1
C2—C11—C10125.1 (2)C19—C24—C23119.5 (2)
O1—C11—C10123.3 (2)C19—C24—H24120.3
C1—C12—O1110.10 (18)C23—C24—H24120.3
O2—S—C1—C12136.67 (16)C9—C10—C11—C20.1 (3)
C19—S—C1—C12111.89 (17)C9—C10—C11—O1179.1 (2)
O2—S—C1—C250.0 (2)C2—C1—C12—O11.4 (2)
C19—S—C1—C261.5 (2)S—C1—C12—O1173.45 (13)
C12—C1—C2—C110.5 (2)C2—C1—C12—C13178.2 (2)
S—C1—C2—C11173.40 (17)S—C1—C12—C133.3 (3)
C12—C1—C2—C3177.6 (2)C11—O1—C12—C11.8 (2)
S—C1—C2—C38.5 (4)C11—O1—C12—C13179.21 (17)
C11—C2—C3—C4178.0 (2)C1—C12—C13—C14129.7 (3)
C1—C2—C3—C40.1 (4)O1—C12—C13—C1447.0 (3)
C11—C2—C3—C80.6 (3)C1—C12—C13—C1850.2 (3)
C1—C2—C3—C8178.5 (2)O1—C12—C13—C18133.2 (2)
C2—C3—C4—C5179.5 (2)C18—C13—C14—C150.8 (3)
C8—C3—C4—C50.9 (3)C12—C13—C14—C15179.1 (2)
C3—C4—C5—C60.0 (3)C13—C14—C15—C160.6 (4)
C4—C5—C6—C70.9 (4)C14—C15—C16—C170.1 (4)
C5—C6—C7—C80.8 (4)C15—C16—C17—C180.3 (4)
C6—C7—C8—C9178.5 (2)C16—C17—C18—C130.1 (3)
C6—C7—C8—C30.2 (3)C14—C13—C18—C170.5 (3)
C4—C3—C8—C71.1 (3)C12—C13—C18—C17179.4 (2)
C2—C3—C8—C7179.70 (19)O2—S—C19—C2416.08 (18)
C4—C3—C8—C9177.6 (2)C1—S—C19—C24130.73 (17)
C2—C3—C8—C91.0 (3)O2—S—C19—C20170.04 (16)
C7—C8—C9—C10179.7 (2)C1—S—C19—C2055.39 (18)
C3—C8—C9—C101.1 (3)C24—C19—C20—C211.9 (3)
C8—C9—C10—C110.6 (3)S—C19—C20—C21175.57 (17)
C3—C2—C11—O1179.15 (17)C19—C20—C21—C220.6 (3)
C1—C2—C11—O10.6 (2)C20—C21—C22—C230.6 (4)
C3—C2—C11—C100.1 (3)C21—C22—C23—C240.5 (3)
C1—C2—C11—C10178.7 (2)C20—C19—C24—C232.0 (3)
C12—O1—C11—C21.5 (2)S—C19—C24—C23175.80 (15)
C12—O1—C11—C10177.8 (2)C22—C23—C24—C190.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.952.593.488 (3)158
C18—H18···O2ii0.952.573.323 (3)137
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H16O2S
Mr368.43
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.2262 (7), 10.3430 (8), 10.4296 (8)
α, β, γ (°)78.298 (1), 86.849 (1), 67.506 (1)
V3)900.15 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6736, 3140, 2602
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections3140
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.952.593.488 (3)158.0
C18—H18···O2ii0.952.573.323 (3)136.7
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731–o1732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds