metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­chloridobis(di­phenyl­aceto­nitrile)platinum(IV)

aDepartment of Chemistry, St Petersburg State University, Stary Petergof 198504, Russian Federation, bInstitute of Macromolecular Compounds of the Russian Academy of Sciences, V. O. Bolshoi Pr. 31, 199004 St Petersburg, Russian Federation, and cDepartment of Chemistry, University of Joensuu, PO Box 111, Joensuu FI-80101, Finland
*Correspondence e-mail: matti.haukka@joensuu.fi

(Received 24 February 2009; accepted 3 May 2009; online 14 May 2009)

In the title compound, [PtCl4(C14H11N)2], the Pt atom lies on an inversion center and has a distorted octa­hedral environment. The main geometric parameters are Pt—N = 1.960 (5) Å, and Pt—Cl = 2.3177 (12) and 2.3196 (12) Å. The N≡C bond is a typical triple bond [1.137 (7) Å]. The Pt—N≡C—C unit is almost linear, with Pt—N—C and N—C—C angles of 174.6 (4) and 177.1 (6)°, respectively.

Related literature

For background literature, see: Kukushkin & Pombeiro (2002[Kukushkin, V. Yu. & Pombeiro, A. J. L. (2002). Chem. Rev. 102, 1771-1802.]); Luzyanin et al. (2002[Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882-1887.]); Pombeiro & Kukushkin (2004[Pombeiro, A. J. L. & Kukushkin, V. Y. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by A. B. P. Lever, pp. 639-660. Elsevier.]), For related structures, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Eysel et al. (1983[Eysel, H. H., Guggolz, E., Kopp, M. & Ziegler, M. L. (1983). Z. Anorg. Allg. Chem. 499, 31-43.]); Johansson et al. (1998[Johansson, L., Ryan, O. B., Romming, C. & Tilset, M. (1998). Organometallics, 17, 3957-3966.]); Kritzenberger et al. (1994[Kritzenberger, J., Yersin, H., Range, K.-J. & Zabel, M. Z. (1994). Z. Naturforsch. Teil B, 49, 297-300.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]); Scollard et al. (2001[Scollard, J. D., Day, M., Labinger, J. A. & Bercaw, J. E. (2001). Helv. Chim. Acta, 84, 3247-3268.]); Svensson et al. (1995[Svensson, P., Lövqvist, K., Kukushkin, V. Y. & Oskarsson, Å. (1995). Acta Chem. Scand. 49, 72-75.]); Yagyu et al. (2002[Yagyu, T., Suzaki, Y. & Osakada, K. (2002). Organometallics, 21, 2088-2094.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl4(C14H11N)2]

  • Mr = 723.37

  • Triclinic, [P \overline 1]

  • a = 5.7980 (3) Å

  • b = 10.8650 (6) Å

  • c = 11.2200 (7) Å

  • α = 92.236 (3)°

  • β = 101.601 (4)°

  • γ = 98.565 (4)°

  • V = 682.91 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.55 mm−1

  • T = 100 K

  • 0.33 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS, Wisconsin, USA.]) Tmin = 0.255, Tmax = 0.717

  • 13055 measured reflections

  • 3096 independent reflections

  • 3076 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.09

  • 3096 reflections

  • 160 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 4.19 e Å−3

  • Δρmin = −2.02 e Å−3

Data collection: COLLECT (Hooft, 2008[Hooft, R. (2008). COLLECT. Bruker AXS, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, a PtIV center was recognized as one of the most efficient electrophilic activators of the CN bond in nitriles (Pombeiro & Kukushkin, 2004; Kukushkin & Pombeiro, 2002). Within the framework of our project focused on reactivity of metal-activated nitriles, a novel platinum(IV) complex, i.e. trans-[PtCl4(NCCHPh2)2], (I), was synthesized and characterized by single-crystal X-ray diffraction. It should be mentioned that only few structures of platinum(IV) nitrile complexes are known, e.g. (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001). Probably the small number of examples is related to the high reactivity of various (nitrile)PtIV species, where nitrile ligands are subject to facile nucleophilic attack even by weak nucleophiles or H2O in wet solvents.

The complex (I) crystallized in the centrosymmetrical P1 space group wherein the Pt atom lies on an inversion center and it has an octahedral environment and nitrile ligands have the mutual trans orientation (Fig. 1). The angles N1—Pt1—Cl2, N1—Pt1—Cl1, Cl2—Pt1—Cl1 are close to the ideal 90°. The Pt1—Cl bond distances (2.3177 (12) and 2.3196 (12) Å) are similar within 3σ with many other Pt—Cl bond lengths (2.323 (38) Å) in related PtIV complexes (Orpen et al., 1989). The Pt1—N distances (1.960 (5) Å) are common for (nitrile)Pt complexes bearing two trans-coordinated nitriles, e.g. 1.943 (11)–1.978 (3) Å in PtII complexes (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995).

The value of the N1C1 bond (1.137 (7) Å) is typical for the triple bonds in PtII-coordinated (1.129 (9)–1.154 (18) Å in trans-[PtCl2(NCR)2] (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995), in PtIV-bound (1.09 (4)–1.157 (12) Å) (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001), and in uncomplexed (1.136 (10) Å (Allen et al., 1987) nitriles. The value of the C1—C2 bond (1.469 (7) Å) agrees well with those reported for Csp–Csp3 single bonds (1.470 (13) Å) (Allen et al., 1987). The Pt1/N1/C1/C2 moiety is almost linear with Pt1—N1C1 and N1C1—C2 angles of 174.6 (4) and 177.1 (6)°, correspondingly. The angle C3—C2—C9 (114.7 (5)°) is larger than 109° probably due to steric repulsion between two phenyl rings.

Related literature top

For background literature, see: Kukushkin & Pombeiro (2002); Luzyanin et al. (2002); Pombeiro & Kukushkin (2004), For related structures, see: Allen et al. (1987); Eysel et al. (1983); Johansson et al. (1998); Kritzenberger et al. (1994); Orpen et al. (1989); Scollard et al. (2001); Svensson et al. (1995); Yagyu et al. (2002).

Experimental top

Diphenylacetonitrile (8.5 mg, 0.044 mmol; purchased from Aldrich) was added to a suspension of trans-[PtCl4(EtCN)2] (9.7 mg, 0.022 mmol) (Luzyanin et al., 2002) in CDCl3 (1 ml) and the reaction mixture was left to stand for 2 d at 323 K in an NMR tube, whereupon orange–yellow crystals were formed on walls of the tube. The crystals were mechanically separated.

Refinement top

The phenyl ring C3–C8 was slightly disordered. However, no disordered model was used in the final refined but the C atoms on phenyl ring C3–C8 were restrained with effective standard deviation 0.1 so that its Uij components approximate to isotropic behavior. All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 and 1.00 Å, for methine and aryl H atoms, respectively, and Uiso = 1.2Ueq(parent atom). The residual electron density in the final difference map could be attributed to insufficient absorption correction as well as twinning, which could not be corrected.

Structure description top

In the past decade, a PtIV center was recognized as one of the most efficient electrophilic activators of the CN bond in nitriles (Pombeiro & Kukushkin, 2004; Kukushkin & Pombeiro, 2002). Within the framework of our project focused on reactivity of metal-activated nitriles, a novel platinum(IV) complex, i.e. trans-[PtCl4(NCCHPh2)2], (I), was synthesized and characterized by single-crystal X-ray diffraction. It should be mentioned that only few structures of platinum(IV) nitrile complexes are known, e.g. (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001). Probably the small number of examples is related to the high reactivity of various (nitrile)PtIV species, where nitrile ligands are subject to facile nucleophilic attack even by weak nucleophiles or H2O in wet solvents.

The complex (I) crystallized in the centrosymmetrical P1 space group wherein the Pt atom lies on an inversion center and it has an octahedral environment and nitrile ligands have the mutual trans orientation (Fig. 1). The angles N1—Pt1—Cl2, N1—Pt1—Cl1, Cl2—Pt1—Cl1 are close to the ideal 90°. The Pt1—Cl bond distances (2.3177 (12) and 2.3196 (12) Å) are similar within 3σ with many other Pt—Cl bond lengths (2.323 (38) Å) in related PtIV complexes (Orpen et al., 1989). The Pt1—N distances (1.960 (5) Å) are common for (nitrile)Pt complexes bearing two trans-coordinated nitriles, e.g. 1.943 (11)–1.978 (3) Å in PtII complexes (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995).

The value of the N1C1 bond (1.137 (7) Å) is typical for the triple bonds in PtII-coordinated (1.129 (9)–1.154 (18) Å in trans-[PtCl2(NCR)2] (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995), in PtIV-bound (1.09 (4)–1.157 (12) Å) (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001), and in uncomplexed (1.136 (10) Å (Allen et al., 1987) nitriles. The value of the C1—C2 bond (1.469 (7) Å) agrees well with those reported for Csp–Csp3 single bonds (1.470 (13) Å) (Allen et al., 1987). The Pt1/N1/C1/C2 moiety is almost linear with Pt1—N1C1 and N1C1—C2 angles of 174.6 (4) and 177.1 (6)°, correspondingly. The angle C3—C2—C9 (114.7 (5)°) is larger than 109° probably due to steric repulsion between two phenyl rings.

For background literature, see: Kukushkin & Pombeiro (2002); Luzyanin et al. (2002); Pombeiro & Kukushkin (2004), For related structures, see: Allen et al. (1987); Eysel et al. (1983); Johansson et al. (1998); Kritzenberger et al. (1994); Orpen et al. (1989); Scollard et al. (2001); Svensson et al. (1995); Yagyu et al. (2002).

Computing details top

Data collection: COLLECT (Hooft, 2008); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
trans-Tetrachloridobis(diphenylacetonitrile)platinum(IV) top
Crystal data top
[PtCl4(C14H11N)2]Z = 1
Mr = 723.37F(000) = 350
Triclinic, P1Dx = 1.759 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7980 (3) ÅCell parameters from 30861 reflections
b = 10.8650 (6) Åθ = 1.0–27.5°
c = 11.2200 (7) ŵ = 5.55 mm1
α = 92.236 (3)°T = 100 K
β = 101.601 (4)°Needle, yellow
γ = 98.565 (4)°0.33 × 0.09 × 0.06 mm
V = 682.91 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
3096 independent reflections
Radiation source: fine-focus sealed tube3076 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 1.9°
φ scans and ω scans with κ offseth = 67
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1314
Tmin = 0.255, Tmax = 0.717l = 1414
13055 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
3096 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 4.19 e Å3
36 restraintsΔρmin = 2.02 e Å3
Crystal data top
[PtCl4(C14H11N)2]γ = 98.565 (4)°
Mr = 723.37V = 682.91 (7) Å3
Triclinic, P1Z = 1
a = 5.7980 (3) ÅMo Kα radiation
b = 10.8650 (6) ŵ = 5.55 mm1
c = 11.2200 (7) ÅT = 100 K
α = 92.236 (3)°0.33 × 0.09 × 0.06 mm
β = 101.601 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3076 reflections with I > 2σ(I)
Tmin = 0.255, Tmax = 0.717Rint = 0.048
13055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03836 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 4.19 e Å3
3096 reflectionsΔρmin = 2.02 e Å3
160 parameters
Special details top

Experimental. IR spectrum in KBr, selected bonds, cm-1: 2340 s ν(CN). 1H NMR spectrum in CDCl3, δ: 5.85 (s, 1H, CH), 7.42 (m, 10H, Ph).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.00000.00000.01907 (11)
Cl10.1642 (2)0.18164 (11)0.02653 (11)0.0242 (3)
Cl20.1559 (2)0.03117 (12)0.17314 (11)0.0259 (3)
N10.2869 (8)0.0989 (4)0.1023 (4)0.0219 (9)
C10.4426 (9)0.1634 (5)0.1627 (5)0.0223 (10)
C20.6350 (10)0.2492 (5)0.2438 (5)0.0244 (10)
H20.79050.22820.23060.029*
C30.6198 (10)0.2260 (6)0.3764 (5)0.0304 (12)
C40.7693 (19)0.1559 (9)0.4421 (7)0.060 (2)
H40.88550.12330.40680.072*
C50.751 (3)0.1322 (10)0.5624 (8)0.083 (4)
H50.85130.08080.60670.100*
C60.5929 (16)0.1807 (9)0.6164 (7)0.058 (2)
H60.58770.16770.69920.069*
C70.442 (2)0.2487 (14)0.5495 (9)0.084 (3)
H70.32630.28190.58490.101*
C80.4554 (18)0.2700 (12)0.4286 (8)0.071 (3)
H80.34680.31640.38250.085*
C90.6217 (10)0.3826 (5)0.2100 (5)0.0253 (11)
C100.8298 (11)0.4709 (6)0.2383 (6)0.0335 (13)
H100.97580.44640.27670.040*
C110.8249 (13)0.5941 (6)0.2106 (7)0.0415 (15)
H110.96710.65350.22980.050*
C120.6130 (13)0.6299 (6)0.1552 (7)0.0396 (14)
H120.60940.71390.13550.047*
C130.4058 (12)0.5434 (6)0.1285 (6)0.0352 (13)
H130.25970.56910.09190.042*
C140.4085 (11)0.4201 (5)0.1543 (5)0.0297 (12)
H140.26560.36120.13420.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02018 (16)0.01738 (16)0.01892 (16)0.00369 (10)0.00211 (10)0.00008 (10)
Cl10.0285 (6)0.0191 (6)0.0254 (6)0.0078 (5)0.0035 (5)0.0017 (5)
Cl20.0321 (7)0.0243 (6)0.0224 (6)0.0052 (5)0.0078 (5)0.0018 (5)
N10.022 (2)0.023 (2)0.022 (2)0.0071 (17)0.0047 (17)0.0036 (17)
C10.025 (3)0.021 (2)0.023 (2)0.008 (2)0.005 (2)0.002 (2)
C20.023 (2)0.024 (3)0.024 (2)0.002 (2)0.002 (2)0.002 (2)
C30.027 (3)0.037 (3)0.023 (2)0.001 (2)0.001 (2)0.001 (2)
C40.084 (5)0.059 (4)0.041 (4)0.035 (4)0.007 (3)0.002 (3)
C50.150 (11)0.072 (7)0.033 (4)0.057 (7)0.002 (5)0.014 (4)
C60.066 (5)0.072 (5)0.027 (3)0.008 (4)0.001 (3)0.007 (3)
C70.078 (6)0.139 (8)0.046 (4)0.037 (6)0.024 (4)0.019 (5)
C80.063 (5)0.123 (7)0.039 (4)0.046 (5)0.013 (3)0.019 (4)
C90.028 (3)0.024 (3)0.025 (2)0.003 (2)0.008 (2)0.002 (2)
C100.030 (3)0.029 (3)0.039 (3)0.001 (2)0.007 (2)0.006 (2)
C110.040 (4)0.028 (3)0.055 (4)0.004 (3)0.015 (3)0.001 (3)
C120.046 (4)0.025 (3)0.049 (4)0.004 (3)0.014 (3)0.001 (3)
C130.040 (3)0.028 (3)0.040 (3)0.011 (2)0.008 (3)0.004 (2)
C140.030 (3)0.024 (3)0.034 (3)0.003 (2)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Pt1—N1i1.960 (5)C6—C71.360 (15)
Pt1—N11.960 (5)C6—H60.9500
Pt1—Cl22.3177 (12)C7—C81.400 (12)
Pt1—Cl2i2.3178 (12)C7—H70.9500
Pt1—Cl12.3196 (12)C8—H80.9500
Pt1—Cl1i2.3196 (12)C9—C141.394 (8)
N1—C11.137 (7)C9—C101.398 (8)
C1—C21.469 (7)C10—C111.389 (9)
C2—C91.522 (8)C10—H100.9500
C2—C31.536 (8)C11—C121.379 (10)
C2—H21.0000C11—H110.9500
C3—C81.348 (11)C12—C131.383 (9)
C3—C41.363 (10)C12—H120.9500
C4—C51.406 (13)C13—C141.383 (9)
C4—H40.9500C13—H130.9500
C5—C61.350 (15)C14—H140.9500
C5—H50.9500
N1i—Pt1—N1180.0C6—C5—H5119.2
N1i—Pt1—Cl288.94 (13)C4—C5—H5119.2
N1—Pt1—Cl291.06 (13)C5—C6—C7118.4 (8)
N1i—Pt1—Cl2i91.06 (13)C5—C6—H6120.8
N1—Pt1—Cl2i88.94 (13)C7—C6—H6120.8
Cl2—Pt1—Cl2i180.0C6—C7—C8120.2 (10)
N1i—Pt1—Cl191.31 (13)C6—C7—H7119.9
N1—Pt1—Cl188.69 (13)C8—C7—H7119.9
Cl2—Pt1—Cl189.95 (5)C3—C8—C7121.4 (9)
Cl2i—Pt1—Cl190.05 (5)C3—C8—H8119.3
N1i—Pt1—Cl1i88.69 (13)C7—C8—H8119.3
N1—Pt1—Cl1i91.31 (13)C14—C9—C10119.1 (6)
Cl2—Pt1—Cl1i90.05 (5)C14—C9—C2122.2 (5)
Cl2i—Pt1—Cl1i89.95 (5)C10—C9—C2118.7 (5)
Cl1—Pt1—Cl1i180.0C11—C10—C9120.5 (6)
C1—N1—Pt1174.6 (4)C11—C10—H10119.7
N1—C1—C2177.1 (6)C9—C10—H10119.7
C1—C2—C9109.6 (4)C12—C11—C10119.8 (6)
C1—C2—C3108.4 (5)C12—C11—H11120.1
C9—C2—C3114.7 (5)C10—C11—H11120.1
C1—C2—H2107.9C11—C12—C13120.0 (6)
C9—C2—H2107.9C11—C12—H12120.0
C3—C2—H2107.9C13—C12—H12120.0
C8—C3—C4118.8 (7)C12—C13—C14120.8 (6)
C8—C3—C2121.4 (6)C12—C13—H13119.6
C4—C3—C2119.8 (6)C14—C13—H13119.6
C3—C4—C5119.6 (9)C13—C14—C9119.8 (6)
C3—C4—H4120.2C13—C14—H14120.1
C5—C4—H4120.2C9—C14—H14120.1
C6—C5—C4121.6 (8)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[PtCl4(C14H11N)2]
Mr723.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7980 (3), 10.8650 (6), 11.2200 (7)
α, β, γ (°)92.236 (3), 101.601 (4), 98.565 (4)
V3)682.91 (7)
Z1
Radiation typeMo Kα
µ (mm1)5.55
Crystal size (mm)0.33 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.255, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
13055, 3096, 3076
Rint0.048
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.09
No. of reflections3096
No. of parameters160
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)4.19, 2.02

Computer programs: COLLECT (Hooft, 2008), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008b), DIAMOND (Brandenburg, 2008).

 

Acknowledgements

This work was supported by the Russian Fund for Basic Research (grant No. 08-03-00247) and the Academy of Finland (grant No. 112392).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEysel, H. H., Guggolz, E., Kopp, M. & Ziegler, M. L. (1983). Z. Anorg. Allg. Chem. 499, 31–43.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. (2008). COLLECT. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationJohansson, L., Ryan, O. B., Romming, C. & Tilset, M. (1998). Organometallics, 17, 3957–3966.  Web of Science CSD CrossRef CAS Google Scholar
First citationKritzenberger, J., Yersin, H., Range, K.-J. & Zabel, M. Z. (1994). Z. Naturforsch. Teil B, 49, 297–300.  CAS Google Scholar
First citationKukushkin, V. Yu. & Pombeiro, A. J. L. (2002). Chem. Rev. 102, 1771–1802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887.  Web of Science CSD CrossRef Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CSD CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPombeiro, A. J. L. & Kukushkin, V. Y. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by A. B. P. Lever, pp. 639–660. Elsevier.  Google Scholar
First citationScollard, J. D., Day, M., Labinger, J. A. & Bercaw, J. E. (2001). Helv. Chim. Acta, 84, 3247–3268.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. Bruker AXS, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, P., Lövqvist, K., Kukushkin, V. Y. & Oskarsson, Å. (1995). Acta Chem. Scand. 49, 72–75.  CrossRef CAS Web of Science Google Scholar
First citationYagyu, T., Suzaki, Y. & Osakada, K. (2002). Organometallics, 21, 2088–2094.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds