metal-organic compounds
trans-Tetrachloridobis(diphenylacetonitrile)platinum(IV)
aDepartment of Chemistry, St Petersburg State University, Stary Petergof 198504, Russian Federation, bInstitute of Macromolecular Compounds of the Russian Academy of Sciences, V. O. Bolshoi Pr. 31, 199004 St Petersburg, Russian Federation, and cDepartment of Chemistry, University of Joensuu, PO Box 111, Joensuu FI-80101, Finland
*Correspondence e-mail: matti.haukka@joensuu.fi
In the title compound, [PtCl4(C14H11N)2], the Pt atom lies on an inversion center and has a distorted octahedral environment. The main geometric parameters are Pt—N = 1.960 (5) Å, and Pt—Cl = 2.3177 (12) and 2.3196 (12) Å. The N≡C bond is a typical triple bond [1.137 (7) Å]. The Pt—N≡C—C unit is almost linear, with Pt—N—C and N—C—C angles of 174.6 (4) and 177.1 (6)°, respectively.
Related literature
For background literature, see: Kukushkin & Pombeiro (2002); Luzyanin et al. (2002); Pombeiro & Kukushkin (2004), For related structures, see: Allen et al. (1987); Eysel et al. (1983); Johansson et al. (1998); Kritzenberger et al. (1994); Orpen et al. (1989); Scollard et al. (2001); Svensson et al. (1995); Yagyu et al. (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 2008); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809016535/pv2142sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809016535/pv2142Isup2.hkl
Diphenylacetonitrile (8.5 mg, 0.044 mmol; purchased from Aldrich) was added to a suspension of trans-[PtCl4(EtCN)2] (9.7 mg, 0.022 mmol) (Luzyanin et al., 2002) in CDCl3 (1 ml) and the reaction mixture was left to stand for 2 d at 323 K in an NMR tube, whereupon orange–yellow crystals were formed on walls of the tube. The crystals were mechanically separated.
The phenyl ring C3–C8 was slightly disordered. However, no disordered model was used in the final refined but the C atoms on phenyl ring C3–C8 were restrained with effective standard deviation 0.1 so that its Uij components approximate to isotropic behavior. All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 and 1.00 Å, for methine and aryl H atoms, respectively, and Uiso = 1.2Ueq(parent atom). The residual electron density in the final difference map could be attributed to insufficient absorption correction as well as
which could not be corrected.In the past decade, a PtIV center was recognized as one of the most efficient electrophilic activators of the C≡N bond in (Pombeiro & Kukushkin, 2004; Kukushkin & Pombeiro, 2002). Within the framework of our project focused on reactivity of metal-activated a novel platinum(IV) complex, i.e. trans-[PtCl4(N≡CCHPh2)2], (I), was synthesized and characterized by single-crystal X-ray diffraction. It should be mentioned that only few structures of platinum(IV) nitrile complexes are known, e.g. (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001). Probably the small number of examples is related to the high reactivity of various (nitrile)PtIV species, where nitrile ligands are subject to facile nucleophilic attack even by weak nucleophiles or H2O in wet solvents.
The complex (I) crystallized in the centrosymmetrical P1 wherein the Pt atom lies on an inversion center and it has an octahedral environment and nitrile ligands have the mutual trans orientation (Fig. 1). The angles N1—Pt1—Cl2, N1—Pt1—Cl1, Cl2—Pt1—Cl1 are close to the ideal 90°. The Pt1—Cl bond distances (2.3177 (12) and 2.3196 (12) Å) are similar within 3σ with many other Pt—Cl bond lengths (2.323 (38) Å) in related PtIV complexes (Orpen et al., 1989). The Pt1—N distances (1.960 (5) Å) are common for (nitrile)Pt complexes bearing two trans-coordinated e.g. 1.943 (11)–1.978 (3) Å in PtII complexes (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995).
The value of the N1≡C1 bond (1.137 (7) Å) is typical for the triple bonds in PtII-coordinated (1.129 (9)–1.154 (18) Å in trans-[PtCl2(NCR)2] (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995), in PtIV-bound (1.09 (4)–1.157 (12) Å) (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001), and in uncomplexed (1.136 (10) Å (Allen et al., 1987) The value of the C1—C2 bond (1.469 (7) Å) agrees well with those reported for Csp–Csp3 single bonds (1.470 (13) Å) (Allen et al., 1987). The Pt1/N1/C1/C2 moiety is almost linear with Pt1—N1≡C1 and N1≡C1—C2 angles of 174.6 (4) and 177.1 (6)°, correspondingly. The angle C3—C2—C9 (114.7 (5)°) is larger than 109° probably due to steric repulsion between two phenyl rings.
For background literature, see: Kukushkin & Pombeiro (2002); Luzyanin et al. (2002); Pombeiro & Kukushkin (2004), For related structures, see: Allen et al. (1987); Eysel et al. (1983); Johansson et al. (1998); Kritzenberger et al. (1994); Orpen et al. (1989); Scollard et al. (2001); Svensson et al. (1995); Yagyu et al. (2002).
Data collection: COLLECT (Hooft, 2008); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
[PtCl4(C14H11N)2] | Z = 1 |
Mr = 723.37 | F(000) = 350 |
Triclinic, P1 | Dx = 1.759 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7980 (3) Å | Cell parameters from 30861 reflections |
b = 10.8650 (6) Å | θ = 1.0–27.5° |
c = 11.2200 (7) Å | µ = 5.55 mm−1 |
α = 92.236 (3)° | T = 100 K |
β = 101.601 (4)° | Needle, yellow |
γ = 98.565 (4)° | 0.33 × 0.09 × 0.06 mm |
V = 682.91 (7) Å3 |
Nonius KappaCCD diffractometer | 3096 independent reflections |
Radiation source: fine-focus sealed tube | 3076 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.048 |
Detector resolution: 9 pixels mm-1 | θmax = 27.4°, θmin = 1.9° |
φ scans and ω scans with κ offset | h = −6→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | k = −13→14 |
Tmin = 0.255, Tmax = 0.717 | l = −14→14 |
13055 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0722P)2 + 0.3244P] where P = (Fo2 + 2Fc2)/3 |
3096 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 4.19 e Å−3 |
36 restraints | Δρmin = −2.02 e Å−3 |
[PtCl4(C14H11N)2] | γ = 98.565 (4)° |
Mr = 723.37 | V = 682.91 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.7980 (3) Å | Mo Kα radiation |
b = 10.8650 (6) Å | µ = 5.55 mm−1 |
c = 11.2200 (7) Å | T = 100 K |
α = 92.236 (3)° | 0.33 × 0.09 × 0.06 mm |
β = 101.601 (4)° |
Nonius KappaCCD diffractometer | 3096 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 3076 reflections with I > 2σ(I) |
Tmin = 0.255, Tmax = 0.717 | Rint = 0.048 |
13055 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 36 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.09 | Δρmax = 4.19 e Å−3 |
3096 reflections | Δρmin = −2.02 e Å−3 |
160 parameters |
Experimental. IR spectrum in KBr, selected bonds, cm-1: 2340 s ν(C≡N). 1H NMR spectrum in CDCl3, δ: 5.85 (s, 1H, CH), 7.42 (m, 10H, Ph). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.0000 | 0.0000 | 0.0000 | 0.01907 (11) | |
Cl1 | −0.1642 (2) | 0.18164 (11) | −0.02653 (11) | 0.0242 (3) | |
Cl2 | 0.1559 (2) | 0.03117 (12) | −0.17314 (11) | 0.0259 (3) | |
N1 | 0.2869 (8) | 0.0989 (4) | 0.1023 (4) | 0.0219 (9) | |
C1 | 0.4426 (9) | 0.1634 (5) | 0.1627 (5) | 0.0223 (10) | |
C2 | 0.6350 (10) | 0.2492 (5) | 0.2438 (5) | 0.0244 (10) | |
H2 | 0.7905 | 0.2282 | 0.2306 | 0.029* | |
C3 | 0.6198 (10) | 0.2260 (6) | 0.3764 (5) | 0.0304 (12) | |
C4 | 0.7693 (19) | 0.1559 (9) | 0.4421 (7) | 0.060 (2) | |
H4 | 0.8855 | 0.1233 | 0.4068 | 0.072* | |
C5 | 0.751 (3) | 0.1322 (10) | 0.5624 (8) | 0.083 (4) | |
H5 | 0.8513 | 0.0808 | 0.6067 | 0.100* | |
C6 | 0.5929 (16) | 0.1807 (9) | 0.6164 (7) | 0.058 (2) | |
H6 | 0.5877 | 0.1677 | 0.6992 | 0.069* | |
C7 | 0.442 (2) | 0.2487 (14) | 0.5495 (9) | 0.084 (3) | |
H7 | 0.3263 | 0.2819 | 0.5849 | 0.101* | |
C8 | 0.4554 (18) | 0.2700 (12) | 0.4286 (8) | 0.071 (3) | |
H8 | 0.3468 | 0.3164 | 0.3825 | 0.085* | |
C9 | 0.6217 (10) | 0.3826 (5) | 0.2100 (5) | 0.0253 (11) | |
C10 | 0.8298 (11) | 0.4709 (6) | 0.2383 (6) | 0.0335 (13) | |
H10 | 0.9758 | 0.4464 | 0.2767 | 0.040* | |
C11 | 0.8249 (13) | 0.5941 (6) | 0.2106 (7) | 0.0415 (15) | |
H11 | 0.9671 | 0.6535 | 0.2298 | 0.050* | |
C12 | 0.6130 (13) | 0.6299 (6) | 0.1552 (7) | 0.0396 (14) | |
H12 | 0.6094 | 0.7139 | 0.1355 | 0.047* | |
C13 | 0.4058 (12) | 0.5434 (6) | 0.1285 (6) | 0.0352 (13) | |
H13 | 0.2597 | 0.5691 | 0.0919 | 0.042* | |
C14 | 0.4085 (11) | 0.4201 (5) | 0.1543 (5) | 0.0297 (12) | |
H14 | 0.2656 | 0.3612 | 0.1342 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02018 (16) | 0.01738 (16) | 0.01892 (16) | 0.00369 (10) | 0.00211 (10) | 0.00008 (10) |
Cl1 | 0.0285 (6) | 0.0191 (6) | 0.0254 (6) | 0.0078 (5) | 0.0035 (5) | 0.0017 (5) |
Cl2 | 0.0321 (7) | 0.0243 (6) | 0.0224 (6) | 0.0052 (5) | 0.0078 (5) | 0.0018 (5) |
N1 | 0.022 (2) | 0.023 (2) | 0.022 (2) | 0.0071 (17) | 0.0047 (17) | 0.0036 (17) |
C1 | 0.025 (3) | 0.021 (2) | 0.023 (2) | 0.008 (2) | 0.005 (2) | 0.002 (2) |
C2 | 0.023 (2) | 0.024 (3) | 0.024 (2) | 0.002 (2) | 0.002 (2) | −0.002 (2) |
C3 | 0.027 (3) | 0.037 (3) | 0.023 (2) | 0.001 (2) | −0.001 (2) | 0.001 (2) |
C4 | 0.084 (5) | 0.059 (4) | 0.041 (4) | 0.035 (4) | 0.007 (3) | 0.002 (3) |
C5 | 0.150 (11) | 0.072 (7) | 0.033 (4) | 0.057 (7) | 0.002 (5) | 0.014 (4) |
C6 | 0.066 (5) | 0.072 (5) | 0.027 (3) | −0.008 (4) | 0.001 (3) | 0.007 (3) |
C7 | 0.078 (6) | 0.139 (8) | 0.046 (4) | 0.037 (6) | 0.024 (4) | 0.019 (5) |
C8 | 0.063 (5) | 0.123 (7) | 0.039 (4) | 0.046 (5) | 0.013 (3) | 0.019 (4) |
C9 | 0.028 (3) | 0.024 (3) | 0.025 (2) | 0.003 (2) | 0.008 (2) | −0.002 (2) |
C10 | 0.030 (3) | 0.029 (3) | 0.039 (3) | −0.001 (2) | 0.007 (2) | −0.006 (2) |
C11 | 0.040 (4) | 0.028 (3) | 0.055 (4) | −0.004 (3) | 0.015 (3) | −0.001 (3) |
C12 | 0.046 (4) | 0.025 (3) | 0.049 (4) | 0.004 (3) | 0.014 (3) | 0.001 (3) |
C13 | 0.040 (3) | 0.028 (3) | 0.040 (3) | 0.011 (2) | 0.008 (3) | 0.004 (2) |
C14 | 0.030 (3) | 0.024 (3) | 0.034 (3) | 0.003 (2) | 0.005 (2) | −0.001 (2) |
Pt1—N1i | 1.960 (5) | C6—C7 | 1.360 (15) |
Pt1—N1 | 1.960 (5) | C6—H6 | 0.9500 |
Pt1—Cl2 | 2.3177 (12) | C7—C8 | 1.400 (12) |
Pt1—Cl2i | 2.3178 (12) | C7—H7 | 0.9500 |
Pt1—Cl1 | 2.3196 (12) | C8—H8 | 0.9500 |
Pt1—Cl1i | 2.3196 (12) | C9—C14 | 1.394 (8) |
N1—C1 | 1.137 (7) | C9—C10 | 1.398 (8) |
C1—C2 | 1.469 (7) | C10—C11 | 1.389 (9) |
C2—C9 | 1.522 (8) | C10—H10 | 0.9500 |
C2—C3 | 1.536 (8) | C11—C12 | 1.379 (10) |
C2—H2 | 1.0000 | C11—H11 | 0.9500 |
C3—C8 | 1.348 (11) | C12—C13 | 1.383 (9) |
C3—C4 | 1.363 (10) | C12—H12 | 0.9500 |
C4—C5 | 1.406 (13) | C13—C14 | 1.383 (9) |
C4—H4 | 0.9500 | C13—H13 | 0.9500 |
C5—C6 | 1.350 (15) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | ||
N1i—Pt1—N1 | 180.0 | C6—C5—H5 | 119.2 |
N1i—Pt1—Cl2 | 88.94 (13) | C4—C5—H5 | 119.2 |
N1—Pt1—Cl2 | 91.06 (13) | C5—C6—C7 | 118.4 (8) |
N1i—Pt1—Cl2i | 91.06 (13) | C5—C6—H6 | 120.8 |
N1—Pt1—Cl2i | 88.94 (13) | C7—C6—H6 | 120.8 |
Cl2—Pt1—Cl2i | 180.0 | C6—C7—C8 | 120.2 (10) |
N1i—Pt1—Cl1 | 91.31 (13) | C6—C7—H7 | 119.9 |
N1—Pt1—Cl1 | 88.69 (13) | C8—C7—H7 | 119.9 |
Cl2—Pt1—Cl1 | 89.95 (5) | C3—C8—C7 | 121.4 (9) |
Cl2i—Pt1—Cl1 | 90.05 (5) | C3—C8—H8 | 119.3 |
N1i—Pt1—Cl1i | 88.69 (13) | C7—C8—H8 | 119.3 |
N1—Pt1—Cl1i | 91.31 (13) | C14—C9—C10 | 119.1 (6) |
Cl2—Pt1—Cl1i | 90.05 (5) | C14—C9—C2 | 122.2 (5) |
Cl2i—Pt1—Cl1i | 89.95 (5) | C10—C9—C2 | 118.7 (5) |
Cl1—Pt1—Cl1i | 180.0 | C11—C10—C9 | 120.5 (6) |
C1—N1—Pt1 | 174.6 (4) | C11—C10—H10 | 119.7 |
N1—C1—C2 | 177.1 (6) | C9—C10—H10 | 119.7 |
C1—C2—C9 | 109.6 (4) | C12—C11—C10 | 119.8 (6) |
C1—C2—C3 | 108.4 (5) | C12—C11—H11 | 120.1 |
C9—C2—C3 | 114.7 (5) | C10—C11—H11 | 120.1 |
C1—C2—H2 | 107.9 | C11—C12—C13 | 120.0 (6) |
C9—C2—H2 | 107.9 | C11—C12—H12 | 120.0 |
C3—C2—H2 | 107.9 | C13—C12—H12 | 120.0 |
C8—C3—C4 | 118.8 (7) | C12—C13—C14 | 120.8 (6) |
C8—C3—C2 | 121.4 (6) | C12—C13—H13 | 119.6 |
C4—C3—C2 | 119.8 (6) | C14—C13—H13 | 119.6 |
C3—C4—C5 | 119.6 (9) | C13—C14—C9 | 119.8 (6) |
C3—C4—H4 | 120.2 | C13—C14—H14 | 120.1 |
C5—C4—H4 | 120.2 | C9—C14—H14 | 120.1 |
C6—C5—C4 | 121.6 (8) |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [PtCl4(C14H11N)2] |
Mr | 723.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7980 (3), 10.8650 (6), 11.2200 (7) |
α, β, γ (°) | 92.236 (3), 101.601 (4), 98.565 (4) |
V (Å3) | 682.91 (7) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 5.55 |
Crystal size (mm) | 0.33 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.255, 0.717 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13055, 3096, 3076 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.099, 1.09 |
No. of reflections | 3096 |
No. of parameters | 160 |
No. of restraints | 36 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 4.19, −2.02 |
Computer programs: COLLECT (Hooft, 2008), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008b), DIAMOND (Brandenburg, 2008).
Acknowledgements
This work was supported by the Russian Fund for Basic Research (grant No. 08-03-00247) and the Academy of Finland (grant No. 112392).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eysel, H. H., Guggolz, E., Kopp, M. & Ziegler, M. L. (1983). Z. Anorg. Allg. Chem. 499, 31–43. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. (2008). COLLECT. Bruker AXS, Delft, The Netherlands. Google Scholar
Johansson, L., Ryan, O. B., Romming, C. & Tilset, M. (1998). Organometallics, 17, 3957–3966. Web of Science CSD CrossRef CAS Google Scholar
Kritzenberger, J., Yersin, H., Range, K.-J. & Zabel, M. Z. (1994). Z. Naturforsch. Teil B, 49, 297–300. CAS Google Scholar
Kukushkin, V. Yu. & Pombeiro, A. J. L. (2002). Chem. Rev. 102, 1771–1802. Web of Science CrossRef PubMed CAS Google Scholar
Luzyanin, K. V., Haukka, M., Bokach, N. A., Kuznetsov, M. L., Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). J. Chem. Soc. Dalton Trans. pp. 1882–1887. Web of Science CSD CrossRef Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83. CSD CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pombeiro, A. J. L. & Kukushkin, V. Y. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by A. B. P. Lever, pp. 639–660. Elsevier. Google Scholar
Scollard, J. D., Day, M., Labinger, J. A. & Bercaw, J. E. (2001). Helv. Chim. Acta, 84, 3247–3268. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. Bruker AXS, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Svensson, P., Lövqvist, K., Kukushkin, V. Y. & Oskarsson, Å. (1995). Acta Chem. Scand. 49, 72–75. CrossRef CAS Web of Science Google Scholar
Yagyu, T., Suzaki, Y. & Osakada, K. (2002). Organometallics, 21, 2088–2094. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decade, a PtIV center was recognized as one of the most efficient electrophilic activators of the C≡N bond in nitriles (Pombeiro & Kukushkin, 2004; Kukushkin & Pombeiro, 2002). Within the framework of our project focused on reactivity of metal-activated nitriles, a novel platinum(IV) complex, i.e. trans-[PtCl4(N≡CCHPh2)2], (I), was synthesized and characterized by single-crystal X-ray diffraction. It should be mentioned that only few structures of platinum(IV) nitrile complexes are known, e.g. (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001). Probably the small number of examples is related to the high reactivity of various (nitrile)PtIV species, where nitrile ligands are subject to facile nucleophilic attack even by weak nucleophiles or H2O in wet solvents.
The complex (I) crystallized in the centrosymmetrical P1 space group wherein the Pt atom lies on an inversion center and it has an octahedral environment and nitrile ligands have the mutual trans orientation (Fig. 1). The angles N1—Pt1—Cl2, N1—Pt1—Cl1, Cl2—Pt1—Cl1 are close to the ideal 90°. The Pt1—Cl bond distances (2.3177 (12) and 2.3196 (12) Å) are similar within 3σ with many other Pt—Cl bond lengths (2.323 (38) Å) in related PtIV complexes (Orpen et al., 1989). The Pt1—N distances (1.960 (5) Å) are common for (nitrile)Pt complexes bearing two trans-coordinated nitriles, e.g. 1.943 (11)–1.978 (3) Å in PtII complexes (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995).
The value of the N1≡C1 bond (1.137 (7) Å) is typical for the triple bonds in PtII-coordinated (1.129 (9)–1.154 (18) Å in trans-[PtCl2(NCR)2] (Eysel et al., 1983; Kritzenberger et al., 1994; Svensson et al. 1995), in PtIV-bound (1.09 (4)–1.157 (12) Å) (Yagyu et al., 2002; Johansson et al., 1998; Scollard et al., 2001), and in uncomplexed (1.136 (10) Å (Allen et al., 1987) nitriles. The value of the C1—C2 bond (1.469 (7) Å) agrees well with those reported for Csp–Csp3 single bonds (1.470 (13) Å) (Allen et al., 1987). The Pt1/N1/C1/C2 moiety is almost linear with Pt1—N1≡C1 and N1≡C1—C2 angles of 174.6 (4) and 177.1 (6)°, correspondingly. The angle C3—C2—C9 (114.7 (5)°) is larger than 109° probably due to steric repulsion between two phenyl rings.