organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(4-amino­phenyl­sulfanyl)phenyl] ketone

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, bAnalysis & Testing Centre, Sichuan University, Chengdu 610064, People's Republic of China, and cInstitute of Materials Science & Technology, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: ppsf@scu.edu.cn

(Received 9 April 2009; accepted 5 May 2009; online 14 May 2009)

The mol­ecule of the title compound, C25H20N2OS2, has imposed twofold rotation symmetry. The dihedral angle formed by the two crystallographically independent phenyl rings is 79.23 (7)°. In the crystal packing, the mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains running parallel to [102].

Related literature

For the properties and applications of the title compound and related derivatives, see: Wang et al. (2006a[Wang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006a). Polymer 47, 4967-4975.],b[Wang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006b). Macromol. Chem. Phys. 207, 1080-1086.]); Jiang et al. (2006[Jiang, X. S., Li, H., Wang, H. Y., Shi, Z. X. & Yin, J. (2006). Polymer 47, 2942-2945.]); Aritomi & Terauchi (1985[Aritomi, M. & Terauchi, M. (1985). Faming Zhuanli Shengqing Gongkai Shuomingshu, 60188365.]); Aritomi & Fujiwara (1986[Aritomi, M. & Fujiwara, H. (1986). Faming Zhuanli Shengqing Gongkai Shuomingshu, 61063647.]). For the synthesis of the title compound, see: Yang et al. (2007[Yang, J., Chen, C. K., Long, S. R. & Liu, C. L. (2007). Faming Zhuanli Shengqing Gongkai Shuomingshu, 1935874.]); Chen et al. (2009[Chen, C. K., Liu, C. L., Zhang, G., Yang, J. & Long, S. R. (2009). Front. Chem. China, 4, 114-119.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N2OS2

  • Mr = 428.55

  • Monoclinic, C 2/c

  • a = 18.945 (3) Å

  • b = 6.025 (2) Å

  • c = 20.793 (5) Å

  • β = 110.64 (4)°

  • V = 2221.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 292 K

  • 0.52 × 0.48 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.877, Tmax = 0.899

  • 2261 measured reflections

  • 1990 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.010

  • 3 standard reflections every 150 reflections intensity decay: 2.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.05

  • 1990 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN2⋯O1i 0.77 (3) 2.52 (3) 3.231 (4) 154 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a major active photo-initiator used in coatings, optics and microelectronic materials (Wang et al., 2006a,b; Jiang et al., 2006) and can be used as monomer in the synthesis of high performance polyamide. Moreover, as photo initiator it has showed superior to the natural compound 4,4'-difluorobenzophenone (Wang et al., 2006a). Besides their properties as photo-initiators, some derivatives of the title compound have also been reported to possess good thermostability and chemical resistance (Aritomi & Terauchi, 1985; Aritomi & Fujiwara, 1986). The synthetic procedure of the title compound have been reported elsewhere (Yang et al., 2007; Chen et al., 2009).

The molecule of the title compound (Fig. 1) has crystallographically imposed twofold rotation symmetry. In the asymmetric unit, the phenyl rings form a dihedral angle of 79.23 (7)°. The C2–C1–C2i–C7i torsion angle is 29.49 (15)° (symmetry code: i = 1-x, y, 1/2-z). In the crystal packing, intermolecular N—H···O hydrogen bonding interactions (Table 1) link the molecules into chains running parallel to the [102] direction.

Related literature top

For the properties and applications of the title compound and related derivatives, see: Wang et al. (2006a,b); Jiang et al. (2006); Aritomi & Terauchi (1985); Aritomi & Fujiwara (1986). For the synthesis of the title compound, see: Yang et al. (2007); Chen et al. (2009).

Experimental top

A mixture of 4,4'-difluorobenzophenone (21.8 g, 0.1 mol), 4-aminothiophenol (25 g, 0.2 mol), K2CO3 (14.0 g, 0.101 mol) and dimethyl acetamide (120 ml) were charged into a three-necked round-bottomed flask fitted with a mechanical stirrer, a thermometer and a nitrogen inlet. The mixture was stirred vigorously at 120°C for 3 h, then the mixture was heated to 166°C and kept for 5 h under nitrogen atmosphere. After the reactor was cooled to room temperature, the reaction solution was poured into water. The resulting solid was filtered, washed with hot water and methanol, dried and recrystallized from a mixture of dimethyl formamide and water (3:1 v/v) to get a yellow powder. Light yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a formamide/water (3:1 v/v) solution at 60°C.

Refinement top

The H atoms bound to the N atom were found in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Unlabelled atoms are related to the labelled atoms by the symmetry operator (1-x, y, 1/2-z).
Bis[4-(4-aminophenylsulfanyl)phenyl) ketone top
Crystal data top
C25H20N2OS2F(000) = 896
Mr = 428.55Dx = 1.282 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 31 reflections
a = 18.945 (3) Åθ = 4.3–9.4°
b = 6.025 (2) ŵ = 0.26 mm1
c = 20.793 (5) ÅT = 292 K
β = 110.64 (4)°Block, yellow
V = 2221.1 (11) Å30.52 × 0.48 × 0.42 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ω–2θ scansh = 2221
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
k = 07
Tmin = 0.877, Tmax = 0.899l = 1824
2261 measured reflections3 standard reflections every 150 reflections
1990 independent reflections intensity decay: 2.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.2492P]
where P = (Fo2 + 2Fc2)/3
1990 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H20N2OS2V = 2221.1 (11) Å3
Mr = 428.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.945 (3) ŵ = 0.26 mm1
b = 6.025 (2) ÅT = 292 K
c = 20.793 (5) Å0.52 × 0.48 × 0.42 mm
β = 110.64 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1441 reflections with I > 2σ(I)
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
Rint = 0.010
Tmin = 0.877, Tmax = 0.8993 standard reflections every 150 reflections
2261 measured reflections intensity decay: 2.4%
1990 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
1990 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59611 (4)0.88028 (12)0.52196 (3)0.0591 (3)
O10.50000.1894 (4)0.25000.0638 (7)
N10.8241 (2)0.3345 (7)0.73370 (17)0.0954 (11)
HN10.811 (2)0.224 (7)0.7515 (19)0.096 (13)*
HN20.8651 (18)0.371 (5)0.7407 (16)0.071 (11)*
C10.50000.3937 (5)0.25000.0397 (7)
C20.52388 (11)0.5146 (3)0.31641 (10)0.0364 (5)
C30.57458 (12)0.4134 (4)0.37505 (11)0.0427 (5)
H30.59330.27310.37140.051*
C40.59739 (12)0.5168 (4)0.43805 (11)0.0437 (5)
H40.63120.44660.47640.052*
C50.56977 (12)0.7271 (4)0.44448 (11)0.0409 (5)
C60.51783 (12)0.8281 (4)0.38664 (10)0.0396 (5)
H60.49790.96620.39070.048*
C70.49596 (11)0.7241 (3)0.32367 (10)0.0371 (5)
H70.46210.79440.28540.045*
C80.66367 (12)0.7082 (4)0.58244 (11)0.0484 (6)
C90.73981 (14)0.7565 (5)0.60170 (13)0.0606 (7)
H90.75550.87500.58140.073*
C100.79254 (14)0.6301 (5)0.65085 (14)0.0650 (8)
H100.84350.66440.66310.078*
C110.77125 (14)0.4541 (5)0.68221 (12)0.0580 (7)
C120.69484 (15)0.4026 (5)0.66200 (13)0.0634 (7)
H120.67940.28190.68160.076*
C130.64197 (13)0.5290 (5)0.61320 (12)0.0567 (7)
H130.59110.49400.60070.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0615 (5)0.0678 (5)0.0395 (4)0.0091 (3)0.0073 (3)0.0110 (3)
O10.0882 (19)0.0344 (13)0.0499 (14)0.0000.0009 (13)0.000
N10.0612 (19)0.134 (3)0.084 (2)0.0128 (19)0.0163 (16)0.042 (2)
C10.0395 (16)0.0318 (16)0.0397 (16)0.0000.0038 (13)0.000
C20.0376 (11)0.0363 (11)0.0336 (10)0.0016 (9)0.0103 (8)0.0045 (8)
C30.0456 (12)0.0357 (12)0.0413 (12)0.0045 (9)0.0084 (10)0.0046 (9)
C40.0408 (12)0.0475 (13)0.0364 (11)0.0030 (10)0.0058 (9)0.0049 (10)
C50.0375 (11)0.0475 (13)0.0379 (11)0.0045 (10)0.0137 (9)0.0013 (9)
C60.0395 (11)0.0413 (12)0.0401 (11)0.0021 (9)0.0166 (10)0.0012 (9)
C70.0350 (10)0.0383 (11)0.0366 (11)0.0017 (9)0.0109 (9)0.0039 (9)
C80.0412 (13)0.0668 (16)0.0348 (11)0.0065 (11)0.0102 (10)0.0071 (11)
C90.0500 (14)0.0760 (18)0.0540 (15)0.0172 (13)0.0164 (12)0.0067 (13)
C100.0364 (13)0.092 (2)0.0602 (16)0.0089 (13)0.0092 (12)0.0043 (15)
C110.0501 (15)0.0776 (17)0.0433 (13)0.0015 (13)0.0126 (11)0.0023 (12)
C120.0585 (16)0.079 (2)0.0537 (15)0.0130 (14)0.0206 (13)0.0093 (13)
C130.0380 (12)0.0843 (19)0.0454 (13)0.0144 (12)0.0115 (10)0.0014 (13)
Geometric parameters (Å, º) top
S1—C51.769 (2)C5—C61.397 (3)
S1—C81.777 (3)C6—C71.377 (3)
O1—C11.231 (3)C6—H60.9300
N1—C111.383 (4)C7—H70.9300
N1—HN10.84 (4)C8—C91.385 (3)
N1—HN20.77 (3)C8—C131.389 (4)
C1—C21.484 (2)C9—C101.380 (4)
C1—C2i1.484 (2)C9—H90.9300
C2—C71.397 (3)C10—C111.377 (4)
C2—C31.398 (3)C10—H100.9300
C3—C41.375 (3)C11—C121.393 (4)
C3—H30.9300C12—C131.377 (4)
C4—C51.395 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—S1—C8103.99 (12)C6—C7—C2121.02 (19)
C11—N1—HN1121 (2)C6—C7—H7119.5
C11—N1—HN2114 (2)C2—C7—H7119.5
HN1—N1—HN2125 (3)C9—C8—C13118.5 (2)
O1—C1—C2119.39 (12)C9—C8—S1119.9 (2)
O1—C1—C2i119.39 (12)C13—C8—S1121.52 (17)
C2—C1—C2i121.2 (2)C10—C9—C8120.4 (2)
C7—C2—C3118.00 (18)C10—C9—H9119.8
C7—C2—C1122.75 (18)C8—C9—H9119.8
C3—C2—C1119.21 (19)C11—C10—C9121.3 (2)
C4—C3—C2121.4 (2)C11—C10—H10119.4
C4—C3—H3119.3C9—C10—H10119.4
C2—C3—H3119.3C10—C11—N1120.9 (3)
C3—C4—C5120.0 (2)C10—C11—C12118.4 (2)
C3—C4—H4120.0N1—C11—C12120.7 (3)
C5—C4—H4120.0C13—C12—C11120.5 (3)
C4—C5—C6119.15 (19)C13—C12—H12119.7
C4—C5—S1124.48 (16)C11—C12—H12119.7
C6—C5—S1116.37 (17)C12—C13—C8120.8 (2)
C7—C6—C5120.3 (2)C12—C13—H13119.6
C7—C6—H6119.8C8—C13—H13119.6
C5—C6—H6119.8
O1—C1—C2—C7150.51 (15)C3—C2—C7—C60.2 (3)
C2i—C1—C2—C729.49 (15)C1—C2—C7—C6178.04 (18)
O1—C1—C2—C327.3 (2)C5—S1—C8—C9102.6 (2)
C2i—C1—C2—C3152.7 (2)C5—S1—C8—C1379.8 (2)
C7—C2—C3—C40.8 (3)C13—C8—C9—C100.6 (4)
C1—C2—C3—C4178.80 (18)S1—C8—C9—C10177.1 (2)
C2—C3—C4—C50.1 (3)C8—C9—C10—C110.3 (4)
C3—C4—C5—C61.3 (3)C9—C10—C11—N1177.0 (3)
C3—C4—C5—S1178.56 (17)C9—C10—C11—C121.5 (4)
C8—S1—C5—C41.7 (2)C10—C11—C12—C131.8 (4)
C8—S1—C5—C6178.18 (16)N1—C11—C12—C13176.7 (3)
C4—C5—C6—C72.0 (3)C11—C12—C13—C80.9 (4)
S1—C5—C6—C7177.89 (16)C9—C8—C13—C120.3 (4)
C5—C6—C7—C21.3 (3)S1—C8—C13—C12177.4 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN2···O1ii0.77 (3)2.52 (3)3.231 (4)154 (3)
Symmetry code: (ii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC25H20N2OS2
Mr428.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)18.945 (3), 6.025 (2), 20.793 (5)
β (°) 110.64 (4)
V3)2221.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.52 × 0.48 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.877, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
2261, 1990, 1441
Rint0.010
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.05
No. of reflections1990
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.30

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN2···O1i0.77 (3)2.52 (3)3.231 (4)154 (3)
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationAritomi, M. & Fujiwara, H. (1986). Faming Zhuanli Shengqing Gongkai Shuomingshu, 61063647.  Google Scholar
First citationAritomi, M. & Terauchi, M. (1985). Faming Zhuanli Shengqing Gongkai Shuomingshu, 60188365.  Google Scholar
First citationChen, C. K., Liu, C. L., Zhang, G., Yang, J. & Long, S. R. (2009). Front. Chem. China, 4, 114–119.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.  Google Scholar
First citationJiang, X. S., Li, H., Wang, H. Y., Shi, Z. X. & Yin, J. (2006). Polymer 47, 2942–2945.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006a). Polymer 47, 4967–4975.  Web of Science CrossRef CAS Google Scholar
First citationWang, H. Y., Wei, J., Jiang, X. S. & Yin, J. (2006b). Macromol. Chem. Phys. 207, 1080–1086.  Web of Science CrossRef CAS Google Scholar
First citationYang, J., Chen, C. K., Long, S. R. & Liu, C. L. (2007). Faming Zhuanli Shengqing Gongkai Shuomingshu, 1935874.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds