organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(3-Methyl­piperidin-1-yl)(phen­yl)meth­yl]-2-naphthol

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 25 April 2009; accepted 7 May 2009; online 14 May 2009)

In the title compound, C23H25NO, the dihedral angle between the naphthyl­ene ring system and the benzene ring is 78.17 (10)°. The mol­ecular conformation is stabilized by a strong intra­molecular O—H⋯N hydrogen bond.

Related literature

For the structures of related compounds, see: Szatmari & Fulop (2004[Szatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155-165.]); Zhao & Sun (2005[Zhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652-m653.]); Wang & Zhao (2008[Wang, W. & Zhao, H. (2008). Acta Cryst. E64, o1900.]); Wan & Zhao (2008[Wan, C. & Zhao, H. (2008). Acta Cryst. E64, o1926.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO

  • Mr = 331.44

  • Monoclinic, P 21 /n

  • a = 9.2138 (13) Å

  • b = 10.9056 (13) Å

  • c = 18.635 (3) Å

  • β = 97.007 (10)°

  • V = 1858.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 292 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.979

  • 19217 measured reflections

  • 4422 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.155

  • S = 0.99

  • 4422 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.84 2.570 (2) 148

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

It is well known that many compounds derived from naphthalen-2-ol have received much attention in organic chemistry (Szatmari & Fulop, 2004; Zhao & Sun, 2005). Recently, we reported the synthesis and crystal structures of 1-[(dimethylamino)(phenyl)methyl]naphthalen-2-ol (Wang & Zhao, 2008) and 1-[pyrrolidin-1-yl(p-tolyl)methyl]naphthalen-2-ol (Wan & Zhao, 2008). We now report the crystal structure of the title compound.

Bond lengths and angles in the title compound have normal values. The dihedral angle between the naphthyl and phenyl rings is 78.17 (10)°. The molecular conformation is stabilized by a strong intramolecular O—H···N hydrogen bond (Table 1). The crystal packing is mainly stabilized by van der Waals interactions.

Related literature top

For the structures of related compounds, see: Szatmari & Fulop (2004); Zhao & Sun (2005); Wang & Zhao (2008); Wan & Zhao (2008).

Experimental top

A dry 50 ml flask was charged with benzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and 3-methylpiperidine (10 mmol). The mixture was stirred at 373 K for 10 h, then ethanol (15 ml) was added. After heating under reflux for 30 min, the precipitate was filtrated off and washed 3 times with ethanol to give the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All H atoms were calculated geometrically, with C—H = 0.93–0.98 Å, O—H= 0.82 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(C, O) for methyl and hydroxy Y atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-[(3-methylpiperidin-1-yl)(phenyl)methyl]-2-naphthol top
Crystal data top
C23H25NOF(000) = 712
Mr = 331.44Dx = 1.185 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2989 reflections
a = 9.2138 (13) Åθ = 2.6–27.9°
b = 10.9056 (13) ŵ = 0.07 mm1
c = 18.635 (3) ÅT = 292 K
β = 97.007 (10)°Prism, pale yellow
V = 1858.5 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.9°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.965, Tmax = 0.979l = 2424
19217 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C23H25NOV = 1858.5 (5) Å3
Mr = 331.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2138 (13) ŵ = 0.07 mm1
b = 10.9056 (13) ÅT = 292 K
c = 18.635 (3) Å0.30 × 0.25 × 0.20 mm
β = 97.007 (10)°
Data collection top
Rigaku SCXmini
diffractometer
4422 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2302 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.979Rint = 0.067
19217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 0.99Δρmax = 0.15 e Å3
4422 reflectionsΔρmin = 0.16 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67985 (19)0.98342 (18)0.20764 (10)0.0429 (5)
H10.64431.06440.22030.051*
C20.78426 (19)0.93769 (17)0.27180 (10)0.0424 (5)
C30.9016 (2)0.86366 (18)0.26209 (11)0.0473 (5)
C40.9972 (2)0.8201 (2)0.32150 (13)0.0588 (6)
H41.07780.77280.31380.071*
C50.9718 (2)0.8470 (2)0.38980 (13)0.0640 (6)
H51.03490.81680.42850.077*
C60.8527 (2)0.9195 (2)0.40364 (11)0.0560 (6)
C70.7590 (2)0.96718 (17)0.34408 (10)0.0466 (5)
C80.6424 (2)1.04328 (19)0.36039 (12)0.0580 (6)
H80.57901.07640.32270.070*
C90.6211 (3)1.0690 (2)0.42986 (13)0.0739 (7)
H90.54451.12010.43880.089*
C100.7124 (3)1.0197 (3)0.48762 (14)0.0845 (9)
H100.69591.03670.53490.101*
C110.8255 (3)0.9467 (2)0.47479 (12)0.0724 (7)
H110.88630.91390.51360.087*
C120.5482 (2)0.89924 (19)0.19333 (10)0.0466 (5)
C130.4093 (2)0.9444 (2)0.19799 (11)0.0601 (6)
H130.39731.02670.20900.072*
C140.2885 (2)0.8692 (3)0.18655 (13)0.0719 (7)
H140.19590.90080.19010.086*
C150.3047 (3)0.7479 (3)0.16990 (13)0.0713 (7)
H150.22310.69720.16200.086*
C160.4413 (2)0.7016 (2)0.16489 (11)0.0655 (6)
H160.45240.61930.15360.079*
C170.5626 (2)0.7767 (2)0.17657 (11)0.0541 (5)
H170.65500.74440.17310.065*
C180.6619 (2)1.0167 (2)0.07506 (10)0.0580 (6)
H18A0.60421.09040.07840.070*
H18B0.59540.94770.06710.070*
C190.7514 (2)1.0277 (2)0.01231 (11)0.0680 (7)
H19A0.80240.95110.00680.082*
H19B0.68641.04210.03180.082*
C200.8616 (2)1.1307 (2)0.02313 (11)0.0634 (6)
H20A0.81061.20870.02160.076*
H20B0.92251.12980.01580.076*
C210.9571 (2)1.11783 (19)0.09503 (11)0.0531 (5)
H211.01521.04280.09350.064*
C220.8604 (2)1.10436 (19)0.15507 (11)0.0509 (5)
H22A0.92171.09400.20080.061*
H22B0.80381.17880.15800.061*
C231.0612 (3)1.2248 (2)0.11110 (14)0.0819 (8)
H23A1.00641.29960.11130.123*
H23B1.12621.22930.07460.123*
H23C1.11711.21320.15760.123*
N10.75966 (16)0.99877 (14)0.14314 (8)0.0455 (4)
O10.93357 (14)0.82835 (13)0.19587 (8)0.0575 (4)
H1A0.88510.86900.16460.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (10)0.0487 (11)0.0419 (11)0.0029 (9)0.0094 (8)0.0008 (9)
C20.0363 (10)0.0451 (10)0.0454 (11)0.0067 (9)0.0030 (8)0.0013 (9)
C30.0389 (11)0.0505 (12)0.0522 (13)0.0056 (9)0.0047 (9)0.0016 (10)
C40.0405 (11)0.0570 (13)0.0758 (17)0.0008 (10)0.0054 (11)0.0039 (12)
C50.0608 (15)0.0662 (15)0.0594 (16)0.0155 (13)0.0149 (11)0.0122 (12)
C60.0570 (13)0.0584 (14)0.0507 (13)0.0203 (12)0.0008 (10)0.0018 (11)
C70.0485 (12)0.0482 (11)0.0435 (12)0.0139 (10)0.0070 (9)0.0010 (9)
C80.0602 (14)0.0652 (14)0.0513 (13)0.0089 (12)0.0177 (10)0.0074 (11)
C90.0778 (17)0.0849 (18)0.0635 (17)0.0153 (15)0.0265 (14)0.0185 (14)
C100.100 (2)0.105 (2)0.0508 (16)0.0353 (18)0.0194 (15)0.0203 (15)
C110.0845 (18)0.0852 (18)0.0454 (14)0.0310 (16)0.0009 (12)0.0018 (13)
C120.0365 (10)0.0610 (13)0.0423 (11)0.0007 (10)0.0045 (8)0.0067 (10)
C130.0417 (12)0.0763 (15)0.0633 (14)0.0043 (12)0.0100 (10)0.0097 (12)
C140.0362 (12)0.109 (2)0.0708 (16)0.0001 (14)0.0087 (11)0.0197 (15)
C150.0502 (14)0.095 (2)0.0660 (15)0.0220 (14)0.0047 (11)0.0137 (14)
C160.0624 (15)0.0728 (16)0.0578 (14)0.0103 (13)0.0066 (11)0.0003 (12)
C170.0418 (11)0.0633 (13)0.0557 (13)0.0011 (11)0.0001 (9)0.0021 (11)
C180.0482 (12)0.0814 (16)0.0437 (12)0.0037 (11)0.0036 (10)0.0040 (11)
C190.0598 (14)0.1003 (19)0.0444 (13)0.0009 (14)0.0082 (10)0.0022 (12)
C200.0637 (14)0.0794 (16)0.0503 (13)0.0048 (13)0.0201 (11)0.0082 (12)
C210.0520 (12)0.0551 (12)0.0551 (13)0.0024 (10)0.0184 (10)0.0001 (10)
C220.0498 (12)0.0539 (12)0.0500 (12)0.0030 (10)0.0105 (9)0.0017 (10)
C230.0856 (18)0.0819 (17)0.0834 (18)0.0242 (15)0.0308 (14)0.0037 (14)
N10.0394 (9)0.0572 (10)0.0403 (9)0.0036 (8)0.0065 (7)0.0003 (8)
O10.0443 (8)0.0662 (10)0.0620 (10)0.0069 (7)0.0062 (7)0.0071 (8)
Geometric parameters (Å, º) top
C1—N11.493 (2)C14—H140.9300
C1—C121.518 (3)C15—C161.370 (3)
C1—C21.524 (3)C15—H150.9300
C1—H10.9800C16—C171.381 (3)
C2—C31.379 (3)C16—H160.9300
C2—C71.431 (3)C17—H170.9300
C3—O11.359 (2)C18—N11.477 (2)
C3—C41.411 (3)C18—C191.516 (3)
C4—C51.354 (3)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.402 (3)C19—C201.510 (3)
C5—H50.9300C19—H19A0.9700
C6—C111.410 (3)C19—H19B0.9700
C6—C71.419 (3)C20—C211.517 (3)
C7—C81.419 (3)C20—H20A0.9700
C8—C91.362 (3)C20—H20B0.9700
C8—H80.9300C21—C231.517 (3)
C9—C101.391 (4)C21—C221.520 (3)
C9—H90.9300C21—H210.9800
C10—C111.356 (4)C22—N11.479 (2)
C10—H100.9300C22—H22A0.9700
C11—H110.9300C22—H22B0.9700
C12—C171.383 (3)C23—H23A0.9600
C12—C131.384 (3)C23—H23B0.9600
C13—C141.378 (3)C23—H23C0.9600
C13—H130.9300O1—H1A0.8200
C14—C151.371 (3)
N1—C1—C12112.81 (15)C14—C15—H15120.1
N1—C1—C2110.03 (15)C15—C16—C17120.2 (2)
C12—C1—C2110.74 (15)C15—C16—H16119.9
N1—C1—H1107.7C17—C16—H16119.9
C12—C1—H1107.7C16—C17—C12120.7 (2)
C2—C1—H1107.7C16—C17—H17119.6
C3—C2—C7118.38 (18)C12—C17—H17119.6
C3—C2—C1121.25 (17)N1—C18—C19109.91 (16)
C7—C2—C1120.33 (17)N1—C18—H18A109.7
O1—C3—C2123.06 (18)C19—C18—H18A109.7
O1—C3—C4115.67 (18)N1—C18—H18B109.7
C2—C3—C4121.3 (2)C19—C18—H18B109.7
C5—C4—C3120.1 (2)H18A—C18—H18B108.2
C5—C4—H4120.0C20—C19—C18112.10 (19)
C3—C4—H4120.0C20—C19—H19A109.2
C4—C5—C6121.6 (2)C18—C19—H19A109.2
C4—C5—H5119.2C20—C19—H19B109.2
C6—C5—H5119.2C18—C19—H19B109.2
C5—C6—C11121.6 (2)H19A—C19—H19B107.9
C5—C6—C7118.5 (2)C19—C20—C21110.91 (17)
C11—C6—C7119.9 (2)C19—C20—H20A109.5
C6—C7—C8116.79 (19)C21—C20—H20A109.5
C6—C7—C2120.03 (19)C19—C20—H20B109.5
C8—C7—C2123.18 (19)C21—C20—H20B109.5
C9—C8—C7121.6 (2)H20A—C20—H20B108.0
C9—C8—H8119.2C20—C21—C23112.82 (18)
C7—C8—H8119.2C20—C21—C22109.29 (17)
C8—C9—C10120.8 (3)C23—C21—C22110.02 (17)
C8—C9—H9119.6C20—C21—H21108.2
C10—C9—H9119.6C23—C21—H21108.2
C11—C10—C9119.7 (2)C22—C21—H21108.2
C11—C10—H10120.1N1—C22—C21112.21 (16)
C9—C10—H10120.1N1—C22—H22A109.2
C10—C11—C6121.2 (2)C21—C22—H22A109.2
C10—C11—H11119.4N1—C22—H22B109.2
C6—C11—H11119.4C21—C22—H22B109.2
C17—C12—C13118.2 (2)H22A—C22—H22B107.9
C17—C12—C1121.84 (17)C21—C23—H23A109.5
C13—C12—C1119.93 (19)C21—C23—H23B109.5
C14—C13—C12121.0 (2)H23A—C23—H23B109.5
C14—C13—H13119.5C21—C23—H23C109.5
C12—C13—H13119.5H23A—C23—H23C109.5
C15—C14—C13120.1 (2)H23B—C23—H23C109.5
C15—C14—H14120.0C18—N1—C22109.40 (15)
C13—C14—H14120.0C18—N1—C1113.43 (14)
C16—C15—C14119.8 (2)C22—N1—C1109.15 (14)
C16—C15—H15120.1C3—O1—H1A109.5
N1—C1—C2—C331.0 (2)C7—C6—C11—C101.1 (3)
C12—C1—C2—C394.4 (2)N1—C1—C12—C1763.6 (2)
N1—C1—C2—C7151.44 (16)C2—C1—C12—C1760.2 (2)
C12—C1—C2—C783.2 (2)N1—C1—C12—C13117.4 (2)
C7—C2—C3—O1178.73 (17)C2—C1—C12—C13118.81 (19)
C1—C2—C3—O11.1 (3)C17—C12—C13—C140.3 (3)
C7—C2—C3—C41.6 (3)C1—C12—C13—C14178.80 (18)
C1—C2—C3—C4179.21 (17)C12—C13—C14—C150.3 (3)
O1—C3—C4—C5177.90 (18)C13—C14—C15—C160.2 (4)
C2—C3—C4—C52.4 (3)C14—C15—C16—C170.0 (3)
C3—C4—C5—C60.9 (3)C15—C16—C17—C120.1 (3)
C4—C5—C6—C11179.4 (2)C13—C12—C17—C160.0 (3)
C4—C5—C6—C71.3 (3)C1—C12—C17—C16179.00 (18)
C5—C6—C7—C8178.04 (18)N1—C18—C19—C2057.0 (3)
C11—C6—C7—C81.2 (3)C18—C19—C20—C2153.8 (3)
C5—C6—C7—C22.0 (3)C19—C20—C21—C23175.32 (19)
C11—C6—C7—C2178.67 (17)C19—C20—C21—C2252.6 (2)
C3—C2—C7—C60.6 (3)C20—C21—C22—N157.4 (2)
C1—C2—C7—C6177.01 (17)C23—C21—C22—N1178.25 (18)
C3—C2—C7—C8179.47 (17)C19—C18—N1—C2259.5 (2)
C1—C2—C7—C82.9 (3)C19—C18—N1—C1178.37 (18)
C6—C7—C8—C90.2 (3)C21—C22—N1—C1861.3 (2)
C2—C7—C8—C9179.68 (19)C21—C22—N1—C1174.09 (16)
C7—C8—C9—C100.9 (3)C12—C1—N1—C1843.3 (2)
C8—C9—C10—C111.1 (4)C2—C1—N1—C18167.50 (16)
C9—C10—C11—C60.0 (4)C12—C1—N1—C22165.56 (15)
C5—C6—C11—C10178.1 (2)C2—C1—N1—C2270.23 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.842.570 (2)148

Experimental details

Crystal data
Chemical formulaC23H25NO
Mr331.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)9.2138 (13), 10.9056 (13), 18.635 (3)
β (°) 97.007 (10)
V3)1858.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.965, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
19217, 4422, 2302
Rint0.067
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.155, 0.99
No. of reflections4422
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.842.570 (2)147.5
 

Acknowledgements

This work was supported by Young Researcher funds from Southeast University (grant No. 4007041027).

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155–165.  Web of Science CrossRef CAS Google Scholar
First citationWan, C. & Zhao, H. (2008). Acta Cryst. E64, o1926.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W. & Zhao, H. (2008). Acta Cryst. E64, o1900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652–m653.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds