organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-[(E)-(2-meth­­oxy-1-naphth­yl)methyl­ene]benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@126.com

(Received 26 April 2009; accepted 5 May 2009; online 14 May 2009)

In the mol­ecule of the title Schiff base compound, C19H15ClN2O2, the dihedral angle between the benzene ring and naphthyl ring system is 77.1 (2)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers through pairs of inter­molecular N–H⋯O hydrogen bonds, generating rings of graph set R22(8).

Related literature

For related structures, see: Tang (2007[Tang, C.-B. (2007). Acta Cryst. E63, o4841.], 2008[Tang, C.-B. (2008). Acta Cryst. E64, o1381.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClN2O2

  • Mr = 338.78

  • Monoclinic, P 21 /c

  • a = 10.751 (2) Å

  • b = 11.405 (2) Å

  • c = 14.376 (3) Å

  • β = 107.794 (10)°

  • V = 1678.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.938

  • 13186 measured reflections

  • 3473 independent reflections

  • 1295 reflections with I > 2σ(I)

  • Rint = 0.158

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.142

  • S = 0.88

  • 3473 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (3) 1.99 (3) 2.886 (4) 172 (4)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the author has reported the structures of a few Schiff base compounds (Tang, 2007; Tang 2008). In a continuation of work in this area, the crystal structure of the title compound is reported herein.

In the title compound (Fig. 1), the dihedral angle between the benzene ring and the naphthyl ring system is 77.1 (2) °. The molecule adopts an E configuration about the CN bond. All the bond lengths are within normal values (Allen et al., 1987). In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked into dimers through intermolecular N–H···O hydrogen bonds (Table 1), forming rings of graph set R22(8) (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For related structures, see: Tang, (2007, 2008). For bond-length data, see: Allen et al. (1987). For graph-set analysis, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

2-Methoxy-1-naphthylaldehyde (0.1 mmol, 18.6 mg) and 2-chlorobenzohydrazide (0.1 mmol, 12.6 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

Atom H2 was located from a difference Fourier map and refined isotropically, with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular hydrogen bonds are drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2-chloro-N'-[(E)-(2-methoxy-1-naphthyl)methylene]benzohydrazide top
Crystal data top
C19H15ClN2O2F(000) = 704
Mr = 338.78Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 394 reflections
a = 10.751 (2) Åθ = 2.3–24.5°
b = 11.405 (2) ŵ = 0.24 mm1
c = 14.376 (3) ÅT = 298 K
β = 107.794 (10)°Block, colourless
V = 1678.4 (6) Å30.30 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3473 independent reflections
Radiation source: fine-focus sealed tube1295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.158
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.931, Tmax = 0.938k = 1414
13186 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
3473 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C19H15ClN2O2V = 1678.4 (6) Å3
Mr = 338.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.751 (2) ŵ = 0.24 mm1
b = 11.405 (2) ÅT = 298 K
c = 14.376 (3) Å0.30 × 0.28 × 0.27 mm
β = 107.794 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3473 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1295 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.938Rint = 0.158
13186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.22 e Å3
3473 reflectionsΔρmin = 0.20 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58262 (12)0.13770 (9)0.03814 (8)0.0647 (4)
N20.6442 (3)0.4212 (3)0.0046 (2)0.0427 (8)
O10.9807 (3)0.5231 (3)0.2634 (2)0.0675 (9)
N10.7735 (3)0.3824 (3)0.0222 (2)0.0435 (9)
C10.9913 (4)0.4199 (3)0.1258 (3)0.0386 (10)
O20.4392 (3)0.3960 (2)0.10180 (18)0.0516 (8)
C101.0644 (4)0.3584 (3)0.0738 (3)0.0397 (10)
C120.5539 (4)0.3633 (3)0.0752 (3)0.0416 (10)
C130.5987 (3)0.2590 (3)0.1185 (3)0.0379 (10)
C21.0565 (4)0.4677 (3)0.2165 (3)0.0474 (11)
C110.8515 (4)0.4435 (3)0.0891 (3)0.0413 (10)
H110.81790.50570.11580.050*
C51.2017 (4)0.3485 (3)0.1163 (3)0.0493 (11)
C140.6132 (3)0.1509 (4)0.0725 (3)0.0417 (10)
C61.2771 (4)0.2898 (4)0.0656 (4)0.0627 (13)
H61.36700.28340.09400.075*
C91.0092 (4)0.3089 (3)0.0203 (3)0.0480 (11)
H90.91970.31500.05090.058*
C31.1932 (4)0.4552 (4)0.2586 (3)0.0581 (12)
H31.23520.48690.31980.070*
C81.0851 (4)0.2527 (3)0.0668 (3)0.0547 (12)
H81.04620.22030.12820.066*
C150.6539 (4)0.0537 (4)0.1128 (3)0.0568 (12)
H150.66400.01830.08100.068*
C71.2201 (5)0.2428 (4)0.0240 (4)0.0675 (14)
H71.27050.20420.05670.081*
C180.6229 (4)0.2670 (4)0.2066 (3)0.0590 (13)
H180.61190.33850.23920.071*
C41.2617 (4)0.3971 (4)0.2094 (3)0.0604 (13)
H41.35140.38860.23750.072*
C160.6793 (4)0.0650 (4)0.2006 (3)0.0675 (14)
H160.70740.00040.22810.081*
C170.6633 (5)0.1709 (5)0.2476 (3)0.0726 (15)
H170.67980.17790.30720.087*
C191.0386 (5)0.5842 (4)0.3518 (4)0.1002 (19)
H19A1.08300.52960.40170.150*
H19B0.97200.62400.37140.150*
H19C1.10010.64040.34230.150*
H20.620 (4)0.483 (2)0.025 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0873 (9)0.0637 (8)0.0513 (7)0.0114 (7)0.0332 (6)0.0104 (6)
N20.035 (2)0.045 (2)0.047 (2)0.0046 (19)0.0109 (17)0.0093 (18)
O10.061 (2)0.085 (2)0.0540 (19)0.0004 (18)0.0137 (17)0.0316 (18)
N10.032 (2)0.048 (2)0.048 (2)0.0042 (17)0.0085 (18)0.0042 (18)
C10.036 (3)0.035 (2)0.041 (3)0.003 (2)0.007 (2)0.001 (2)
O20.0356 (18)0.0600 (19)0.0539 (18)0.0118 (15)0.0059 (15)0.0056 (15)
C100.030 (2)0.045 (3)0.045 (3)0.005 (2)0.012 (2)0.009 (2)
C120.041 (3)0.048 (3)0.037 (2)0.001 (2)0.015 (2)0.003 (2)
C130.036 (3)0.052 (3)0.028 (2)0.000 (2)0.013 (2)0.003 (2)
C20.046 (3)0.045 (3)0.053 (3)0.000 (2)0.018 (2)0.003 (2)
C110.040 (3)0.040 (3)0.044 (3)0.006 (2)0.014 (2)0.001 (2)
C50.049 (3)0.043 (3)0.058 (3)0.003 (2)0.020 (3)0.003 (2)
C140.039 (3)0.052 (3)0.034 (2)0.003 (2)0.012 (2)0.004 (2)
C60.044 (3)0.058 (3)0.084 (4)0.003 (3)0.017 (3)0.003 (3)
C90.044 (3)0.052 (3)0.048 (3)0.002 (2)0.015 (2)0.003 (2)
C30.045 (3)0.064 (3)0.052 (3)0.007 (2)0.004 (2)0.011 (3)
C80.064 (4)0.051 (3)0.055 (3)0.008 (2)0.027 (3)0.004 (2)
C150.063 (3)0.053 (3)0.053 (3)0.007 (2)0.016 (2)0.001 (3)
C70.059 (4)0.064 (3)0.091 (4)0.010 (3)0.040 (3)0.000 (3)
C180.077 (4)0.058 (3)0.046 (3)0.005 (3)0.024 (3)0.005 (2)
C40.045 (3)0.061 (3)0.066 (3)0.004 (2)0.003 (3)0.009 (3)
C160.073 (3)0.069 (4)0.062 (3)0.012 (3)0.022 (3)0.022 (3)
C170.097 (4)0.081 (4)0.051 (3)0.015 (3)0.038 (3)0.009 (3)
C190.091 (4)0.105 (4)0.097 (4)0.004 (3)0.018 (3)0.064 (4)
Geometric parameters (Å, º) top
Cl1—C141.726 (4)C6—C71.356 (6)
N2—C121.344 (5)C6—H60.9300
N2—N11.395 (4)C9—C81.362 (5)
N2—H20.90 (3)C9—H90.9300
O1—C21.361 (4)C3—C41.342 (5)
O1—C191.416 (4)C3—H30.9300
N1—C111.273 (4)C8—C71.398 (6)
C1—C21.390 (5)C8—H80.9300
C1—C101.424 (5)C15—C161.377 (5)
C1—C111.458 (5)C15—H150.9300
O2—C121.232 (4)C7—H70.9300
C10—C91.418 (5)C18—C171.375 (5)
C10—C51.419 (5)C18—H180.9300
C12—C131.490 (5)C4—H40.9300
C13—C181.371 (5)C16—C171.369 (6)
C13—C141.385 (5)C16—H160.9300
C2—C31.415 (5)C17—H170.9300
C11—H110.9300C19—H19A0.9600
C5—C41.409 (5)C19—H19B0.9600
C5—C61.413 (5)C19—H19C0.9600
C14—C151.382 (5)
C12—N2—N1118.8 (3)C8—C9—H9119.5
C12—N2—H2119 (3)C10—C9—H9119.5
N1—N2—H2122 (3)C4—C3—C2119.3 (4)
C2—O1—C19120.5 (3)C4—C3—H3120.3
C11—N1—N2114.0 (3)C2—C3—H3120.3
C2—C1—C10119.0 (4)C9—C8—C7121.3 (4)
C2—C1—C11115.8 (4)C9—C8—H8119.4
C10—C1—C11125.1 (4)C7—C8—H8119.4
C9—C10—C5117.1 (4)C16—C15—C14119.1 (4)
C9—C10—C1124.0 (4)C16—C15—H15120.4
C5—C10—C1118.8 (4)C14—C15—H15120.4
O2—C12—N2120.6 (4)C6—C7—C8119.6 (4)
O2—C12—C13122.2 (4)C6—C7—H7120.2
N2—C12—C13117.2 (4)C8—C7—H7120.2
C18—C13—C14118.4 (4)C13—C18—C17121.1 (4)
C18—C13—C12120.7 (4)C13—C18—H18119.5
C14—C13—C12120.9 (3)C17—C18—H18119.5
O1—C2—C1116.1 (4)C3—C4—C5122.0 (4)
O1—C2—C3122.4 (4)C3—C4—H4119.0
C1—C2—C3121.4 (4)C5—C4—H4119.0
N1—C11—C1122.7 (4)C17—C16—C15120.3 (4)
N1—C11—H11118.6C17—C16—H16119.8
C1—C11—H11118.6C15—C16—H16119.8
C4—C5—C6120.5 (4)C16—C17—C18120.0 (4)
C4—C5—C10119.4 (4)C16—C17—H17120.0
C6—C5—C10120.1 (4)C18—C17—H17120.0
C15—C14—C13121.1 (4)O1—C19—H19A109.5
C15—C14—Cl1119.3 (3)O1—C19—H19B109.5
C13—C14—Cl1119.5 (3)H19A—C19—H19B109.5
C7—C6—C5120.9 (4)O1—C19—H19C109.5
C7—C6—H6119.6H19A—C19—H19C109.5
C5—C6—H6119.6H19B—C19—H19C109.5
C8—C9—C10121.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)1.99 (3)2.886 (4)172 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15ClN2O2
Mr338.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.751 (2), 11.405 (2), 14.376 (3)
β (°) 107.794 (10)
V3)1678.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
13186, 3473, 1295
Rint0.158
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.142, 0.88
No. of reflections3473
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)1.99 (3)2.886 (4)172 (4)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Financial support from Jiaying University Research Fund is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2007). Acta Cryst. E63, o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2008). Acta Cryst. E64, o1381.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds