organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-3-nitro­pyridine

aSchool of City Development, University of Jinan, Jinan 250002, People's Republic of China, and bShandong Blood Center, Jinan 250014, People's Republic of China
*Correspondence e-mail: lihuamao2009@yahoo.cn

(Received 3 May 2009; accepted 16 May 2009; online 29 May 2009)

In the crystal structure of the title compound, C5H3IN2O2, inter­molecular C—H⋯N hydrogen-bonding inter­actions link the mol­ecules into one-dimensional chains along the b axis.

Related literature

For the applications of 2-iodo-3-nitro­pyridine in organic synthesis, see: Baik et al. (2005[Baik, W. H., Kim, J. M., Kim, Y. S., Yoon, C. H., Kim, J. K. & Lee, S. W. (2005). US Patent No. 6 943 257.]); Choi-Sledeski et al. (2003[Choi-Sledeski, Y. M., Pauls, H. W., Barton, J. N., Ewing, W. R., Green, D. M., Becker, M. R. & Gong, Y. (2003). US Patent No. 6 602 864.]). For the crystal structure of related compounds, see: Holmes et al. (2002[Holmes, B. T., Padgett, C. W. & Pennington, W. T. (2002). Acta Cryst. C58, o602-o603.]); Saha et al. (2006[Saha, B. K., Nangia, A. & Nicoud, J.-F. (2006). Cryst. Growth Des. 6, 1278-1281.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3IN2O2

  • Mr = 249.99

  • Monoclinic, P 21 /c

  • a = 8.0169 (15) Å

  • b = 12.313 (2) Å

  • c = 8.0999 (15) Å

  • β = 119.66 (2)°

  • V = 694.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 298 K

  • 0.60 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.147, Tmax = 0.385

  • 3615 measured reflections

  • 1345 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.12

  • 1345 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2i 0.93 2.61 3.529 (5) 172
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper, we report the crystal structure of the title compound, 2-iodo-3-nitropyridine, which is an important intermediate in organic synthesis (Baik et al., 2005; Choi-Sledeski et al., 2003).

In the molecule of the title compound (Fig. 1), all bond lengths are normal and in a good agreement with those reported previously for 2,6-diiodopyridine (Holmes et al., 2002) and 2-iodo-3hydroxypyridine (Saha et al., 2006). Atoms I1 and N1 are slightly displaced on opposite sides of the pyridine ring by 0.0719 (3) and 0.015 (4) Å, respectively. The nitro group is tilted by 34.6 (3)° with respect to the pyridine ring. The crystal structure is stabilized by intermolecular C—H···N hydrogen bonds (Table 1) linking the molecules into one dimension chains along the b axis (Fig. 2).

Related literature top

For the applications of 2-iodo-3-nitropyridine in organic synthesis, see: Baik et al. (2005); Choi-Sledeski et al. (2003). For the crystal structure of related compounds, see: Holmes et al. (2002); Saha et al. (2006).

Experimental top

The title compound was prepared by reaction of 2-amino-3-nitropyridine (1.1 g, 5 mmol), KNO3 (1.01 g, 10 mmol), HI (6.6 g, 25 mmol, 50% aqueous solution), CuI (0.48 g, 2.5 mmol) and DMSO (60 ml) at 333K. After neutralizing with an alkaline solution, the reaction mixture was extracted several times with diethyl ether. The combined ethereal extracts were washed with water, dried over anhydrous sodium sulfate and concentrated to afford the crude product. Purification by flash chromatography gave 2-iodo-3-nitropyridine as a yellow solid in 70% isolated yield (0.875 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature over a period of one week.

Refinement top

All H atoms were found on difference maps, with C—H = 0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed along the c axis. Intermolecular H bonds are shown as dashed lines.
2-Iodo-3-nitropyridine top
Crystal data top
C5H3IN2O2F(000) = 464
Mr = 249.99Dx = 2.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1077 reflections
a = 8.0169 (15) Åθ = 2.5–25.9°
b = 12.313 (2) ŵ = 4.54 mm1
c = 8.0999 (15) ÅT = 298 K
β = 119.66 (2)°Block, yellow
V = 694.8 (3) Å30.60 × 0.30 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1345 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.147, Tmax = 0.385k = 1514
3615 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1824P]
where P = (Fo2 + 2Fc2)/3
1345 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C5H3IN2O2V = 694.8 (3) Å3
Mr = 249.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0169 (15) ŵ = 4.54 mm1
b = 12.313 (2) ÅT = 298 K
c = 8.0999 (15) Å0.60 × 0.30 × 0.21 mm
β = 119.66 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1345 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1267 reflections with I > 2σ(I)
Tmin = 0.147, Tmax = 0.385Rint = 0.037
3615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.12Δρmax = 0.50 e Å3
1345 reflectionsΔρmin = 1.09 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.59372 (3)0.162020 (19)0.16542 (4)0.03968 (14)
O10.7237 (5)0.5149 (2)0.3364 (5)0.0601 (9)
O20.5036 (5)0.4081 (3)0.1331 (6)0.0635 (9)
N10.6704 (5)0.4373 (3)0.2292 (5)0.0395 (7)
C10.8177 (5)0.3758 (3)0.2090 (5)0.0304 (7)
C20.9711 (5)0.4353 (3)0.2237 (6)0.0378 (8)
H2A0.98070.50950.24770.045*
C31.1084 (6)0.3811 (4)0.2019 (6)0.0443 (10)
H3A1.21270.41800.20840.053*
C41.0884 (5)0.2712 (4)0.1703 (6)0.0465 (11)
H4A1.18120.23490.15440.056*
N20.9430 (5)0.2136 (2)0.1610 (5)0.0389 (7)
C50.8074 (5)0.2654 (3)0.1774 (5)0.0300 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0391 (2)0.0313 (2)0.0496 (2)0.00698 (8)0.02262 (15)0.00258 (9)
O10.073 (2)0.0392 (16)0.074 (2)0.0116 (15)0.0408 (19)0.0131 (16)
O20.0423 (18)0.0458 (17)0.107 (3)0.0055 (15)0.0404 (19)0.0006 (19)
N10.043 (2)0.0296 (16)0.053 (2)0.0098 (14)0.0293 (17)0.0093 (16)
C10.0318 (18)0.0274 (17)0.0322 (17)0.0040 (14)0.0161 (14)0.0012 (15)
C20.040 (2)0.0275 (17)0.045 (2)0.0054 (15)0.0204 (18)0.0024 (17)
C30.038 (2)0.040 (2)0.057 (2)0.0087 (17)0.0248 (19)0.003 (2)
C40.038 (2)0.043 (2)0.067 (3)0.0012 (16)0.033 (2)0.0095 (19)
N20.0402 (17)0.0257 (15)0.0535 (19)0.0024 (13)0.0253 (15)0.0042 (15)
C50.0270 (16)0.0306 (18)0.0291 (16)0.0016 (14)0.0114 (14)0.0006 (14)
Geometric parameters (Å, º) top
I1—C52.097 (3)C2—H2A0.9300
O1—N11.217 (4)C3—C41.371 (8)
O2—N11.222 (5)C3—H3A0.9300
N1—C11.478 (4)C4—N21.335 (5)
C1—C51.378 (5)C4—H4A0.9300
C1—C21.385 (5)N2—C51.322 (4)
C2—C31.372 (6)
O1—N1—O2124.9 (3)C4—C3—H3A120.8
O1—N1—C1117.6 (3)C2—C3—H3A120.8
O2—N1—C1117.5 (3)N2—C4—C3123.6 (3)
C5—C1—C2120.5 (3)N2—C4—H4A118.2
C5—C1—N1123.2 (3)C3—C4—H4A118.2
C2—C1—N1116.3 (3)C5—N2—C4118.5 (3)
C3—C2—C1117.8 (4)N2—C5—C1121.2 (3)
C3—C2—H2A121.1N2—C5—I1113.3 (2)
C1—C2—H2A121.1C1—C5—I1125.4 (2)
C4—C3—C2118.5 (3)
O1—N1—C1—C5146.8 (4)C3—C4—N2—C52.2 (6)
O2—N1—C1—C535.1 (5)C4—N2—C5—C11.9 (5)
O1—N1—C1—C233.1 (5)C4—N2—C5—I1178.8 (3)
O2—N1—C1—C2145.0 (4)C2—C1—C5—N20.2 (5)
C5—C1—C2—C31.3 (6)N1—C1—C5—N2179.7 (3)
N1—C1—C2—C3178.7 (4)C2—C1—C5—I1176.6 (3)
C1—C2—C3—C41.2 (6)N1—C1—C5—I13.3 (5)
C2—C3—C4—N20.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.932.613.529 (5)172
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H3IN2O2
Mr249.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.0169 (15), 12.313 (2), 8.0999 (15)
β (°) 119.66 (2)
V3)694.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.54
Crystal size (mm)0.60 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.147, 0.385
No. of measured, independent and
observed [I > 2σ(I)] reflections
3615, 1345, 1267
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.12
No. of reflections1345
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 1.09

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.932.613.529 (5)172.4
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 40672158) and the PhD Fund of the University of Jinan (No. B0640).

References

First citationBaik, W. H., Kim, J. M., Kim, Y. S., Yoon, C. H., Kim, J. K. & Lee, S. W. (2005). US Patent No. 6 943 257.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi-Sledeski, Y. M., Pauls, H. W., Barton, J. N., Ewing, W. R., Green, D. M., Becker, M. R. & Gong, Y. (2003). US Patent No. 6 602 864.  Google Scholar
First citationHolmes, B. T., Padgett, C. W. & Pennington, W. T. (2002). Acta Cryst. C58, o602–o603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaha, B. K., Nangia, A. & Nicoud, J.-F. (2006). Cryst. Growth Des. 6, 1278-1281.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds