organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5,6-di­carb­oxy­benzimidazolium) sulfate monohydrate

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 29 April 2009; accepted 14 May 2009; online 20 May 2009)

In the title compound, 2C9H7N2O4+·SO42−·H2O, the sulfate S atom and the water O atom reside on a crystallographic twofold axis. In the crystal, the component species are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network structure. An intramol­ecular O—H⋯O link is seen in the cation.

Related literature

For a related structure that contains a benzimidazole mol­ecule, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]). For the pharmacokinetics of an anti­allergic benzimidazole derivative, see: Sakai et al. (1989[Sakai, T., Hamada, T., Awata, N. & Watanabe, J. (1989). J. Pharmacobio-Dynam. 12, 530-536.]). For the synthesis and chemoluminescence of an amino drivative, see: White & Matsuo (1967[White, E. H. & Matsuo, K. (1967). J. Org. Chem. 32, 1921-1926.]).

[Scheme 1]

Experimental

Crystal data
  • 2C9H7N2O4+·SO42−·H2O

  • Mr = 528.41

  • Orthorhombic, P b c n

  • a = 14.691 (3) Å

  • b = 7.7968 (17) Å

  • c = 17.983 (4) Å

  • V = 2059.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.976

  • 11525 measured reflections

  • 2413 independent reflections

  • 1994 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.00

  • 2413 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H22⋯O1Wii 0.90 1.96 2.8365 (10) 163
N1—H25⋯O11iii 0.88 1.82 2.6931 (12) 175
C5—H5A⋯O2v 0.93 2.20 3.098 (3) 162
O1—H28⋯O9iv 0.85 1.84 2.6616 (11) 161
O4—H21⋯O11 0.85 1.79 2.6330 (11) 169
O1W—H1WA⋯O3i 0.96 (6) 2.26 (5) 2.9012 (11) 123.6
O1W—H1WA⋯O11i 0.96 (6) 2.47 (6) 3.1575 (16) 128.4
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole and related heterocyclic compounds have been extensively investigated because of their pharmacological activities (Sakai et al., 1989) and the application as intermediate for the synthesis of chemiluminescent compound (White & Matsuo, 1967). Otherwise, this kind of compounds is one of the most prevalent ligands in the field of coordination chemistry (Gao et al., 2008). Herein, we report the crystal structure of the title compound (Fig. 1), Bis(1H-benzimidazolium-5,6-dicarboxyl) sulfate monohydrate.

The title compound consists of two 1H-benzimidazole-5,6-dicarboxylic acid cations, one sulfate dianion and one water molecule. The sulfate S atom and the water O atom reside on crystallographic twofold axis. As one imine N atom on the benzimidazolium ring is protonated, there exsist positive charge in the ring (Scheme 1). The cations, dianions and water molecules are linked through a combination of intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1) to form a three-dimensional network structure.

Related literature top

For a related structure that contains a benzimidazole molecule, see: Gao et al. (2008). For the pharmacokinetics of an antiallergic benzimidazole derivative, see: Sakai et al. (1989). For the synthesis and chemoluminescence of an amino drivative, see: White & Matsuo (1967).

Experimental top

A solution containing a 2:1 molar ratio of ZnSO4 and 1H-benzoimidazole-5,6-dicarboxylate in water was sealed in a 25 ml teflon reactor and kept at 393K for 3 days. Then the mixture was filtered and the filtrate was allowed to stand at room temperature. Colorless block crystals suitable for the X-ray investigation were collected.

Refinement top

The water H atoms were located in a difference Fourier map and freely refined. The N-bound H atoms were located in a difference Fourier map and fixed during the refinement with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms labelled A have the symmetry code A = -x, y, 1/2 - z.
Bis(5,6-dicarboxybenzimidazolium) sulfate monohydrate top
Crystal data top
2C9H7N2O4+·SO42·H2OF(000) = 1088
Mr = 528.41Dx = 1.704 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2413 reflections
a = 14.691 (3) Åθ = 2.3–25.0°
b = 7.7968 (17) ŵ = 0.24 mm1
c = 17.983 (4) ÅT = 296 K
V = 2059.8 (8) Å3Block, colorless
Z = 40.12 × 0.11 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2413 independent reflections
Radiation source: fine-focus sealed tube1994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1716
Tmin = 0.971, Tmax = 0.976k = 99
11525 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.8915P]
where P = (Fo2 + 2Fc2)/3
2413 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
2C9H7N2O4+·SO42·H2OV = 2059.8 (8) Å3
Mr = 528.41Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 14.691 (3) ŵ = 0.24 mm1
b = 7.7968 (17) ÅT = 296 K
c = 17.983 (4) Å0.12 × 0.11 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2413 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1994 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.060
11525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.46 e Å3
2413 reflectionsΔρmin = 0.40 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35417 (10)0.1890 (2)0.09502 (8)0.0418 (4)
H280.36850.19030.14080.050*
O20.22201 (11)0.2483 (3)0.15019 (8)0.0553 (5)
O30.00994 (12)0.3035 (2)0.08983 (10)0.0586 (5)
O40.08286 (11)0.05673 (19)0.07644 (9)0.0474 (4)
H210.04650.01720.10890.057*
N10.29633 (11)0.4817 (2)0.16017 (8)0.0344 (4)
H250.35350.49820.17180.041*
N20.15053 (11)0.5073 (2)0.17520 (9)0.0358 (4)
H220.09690.53550.19620.043*
C10.26786 (14)0.2354 (2)0.09487 (10)0.0339 (4)
C20.23266 (12)0.2806 (2)0.01950 (9)0.0280 (4)
C30.29283 (11)0.3365 (2)0.03408 (10)0.0293 (4)
H3A0.35540.32710.02760.035*
C40.25595 (12)0.4077 (2)0.09819 (9)0.0282 (4)
C50.23151 (14)0.5390 (3)0.20452 (11)0.0381 (4)
H5A0.24130.59360.24980.046*
C60.16218 (12)0.4236 (2)0.10814 (10)0.0295 (4)
C70.10081 (12)0.3636 (2)0.05544 (10)0.0316 (4)
H7A0.03830.37210.06260.038*
C80.13689 (12)0.2909 (2)0.00784 (10)0.0301 (4)
C90.07088 (12)0.2201 (3)0.06351 (11)0.0345 (4)
S10.00000.14201 (8)0.25000.0295 (2)
O90.07896 (13)0.2429 (2)0.22937 (9)0.0630 (6)
O110.02520 (10)0.0310 (2)0.18688 (9)0.0533 (5)
O1W0.00000.3439 (3)0.25000.0540 (6)
H1WA0.024 (5)0.266 (8)0.286 (3)0.20 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0398 (8)0.0540 (9)0.0318 (7)0.0075 (6)0.0091 (6)0.0022 (6)
O20.0509 (9)0.0893 (13)0.0258 (7)0.0019 (9)0.0010 (6)0.0032 (7)
O30.0511 (10)0.0602 (10)0.0645 (11)0.0225 (8)0.0302 (8)0.0198 (9)
O40.0501 (9)0.0412 (8)0.0510 (9)0.0022 (7)0.0229 (7)0.0079 (7)
N10.0301 (8)0.0445 (9)0.0285 (8)0.0057 (7)0.0029 (6)0.0030 (6)
N20.0331 (8)0.0436 (9)0.0306 (8)0.0038 (7)0.0061 (6)0.0050 (7)
C10.0392 (10)0.0365 (10)0.0260 (9)0.0010 (8)0.0034 (7)0.0017 (7)
C20.0283 (8)0.0305 (9)0.0253 (8)0.0027 (7)0.0014 (6)0.0028 (6)
C30.0239 (8)0.0355 (10)0.0284 (8)0.0007 (7)0.0010 (6)0.0025 (7)
C40.0264 (8)0.0330 (9)0.0252 (8)0.0035 (7)0.0010 (6)0.0035 (7)
C50.0404 (10)0.0445 (11)0.0295 (9)0.0061 (9)0.0012 (8)0.0035 (8)
C60.0281 (8)0.0328 (9)0.0275 (8)0.0020 (7)0.0039 (6)0.0003 (7)
C70.0222 (8)0.0381 (10)0.0345 (9)0.0011 (7)0.0002 (7)0.0012 (7)
C80.0292 (8)0.0321 (9)0.0291 (9)0.0009 (7)0.0040 (7)0.0014 (7)
C90.0287 (9)0.0426 (11)0.0323 (9)0.0032 (7)0.0055 (7)0.0038 (8)
S10.0309 (3)0.0334 (4)0.0243 (3)0.0000.0043 (2)0.000
O90.0814 (13)0.0702 (12)0.0374 (8)0.0449 (10)0.0205 (8)0.0090 (8)
O110.0300 (7)0.0781 (11)0.0517 (9)0.0056 (8)0.0054 (6)0.0308 (8)
O1W0.0597 (16)0.0487 (14)0.0538 (15)0.0000.0195 (11)0.000
Geometric parameters (Å, º) top
O1—C11.319 (2)C2—C81.425 (2)
O1—H280.8499C3—C41.389 (3)
O2—C11.205 (2)C3—H3A0.9300
O3—C91.204 (2)C4—C61.395 (3)
O4—C91.306 (3)C5—H5A0.9300
O4—H210.8496C6—C71.389 (3)
N1—C51.320 (3)C7—C81.377 (3)
N1—C41.388 (2)C7—H7A0.9300
N1—H250.8747C8—C91.499 (2)
N2—C51.325 (3)S1—O9i1.4498 (16)
N2—C61.382 (2)S1—O91.4498 (16)
N2—H220.9011S1—O11i1.4745 (15)
C1—C21.493 (2)S1—O111.4745 (15)
C2—C31.379 (2)O1W—H1WA0.95 (6)
C1—O1—H28103.7N1—C5—H5A124.9
C9—O4—H21113.0N2—C5—H5A124.9
C5—N1—C4108.51 (16)N2—C6—C7132.38 (17)
C5—N1—H25119.9N2—C6—C4106.03 (15)
C4—N1—H25131.5C7—C6—C4121.58 (17)
C5—N2—C6108.92 (16)C8—C7—C6116.90 (17)
C5—N2—H22124.9C8—C7—H7A121.6
C6—N2—H22126.1C6—C7—H7A121.6
O2—C1—O1123.95 (17)C7—C8—C2121.67 (16)
O2—C1—C2122.41 (18)C7—C8—C9117.03 (16)
O1—C1—C2113.55 (16)C2—C8—C9121.30 (16)
C3—C2—C8120.82 (16)O3—C9—O4123.86 (18)
C3—C2—C1119.15 (16)O3—C9—C8122.97 (18)
C8—C2—C1119.28 (16)O4—C9—C8113.02 (16)
C2—C3—C4117.14 (16)O9i—S1—O9114.29 (17)
C2—C3—H3A121.4O9i—S1—O11i108.80 (9)
C4—C3—H3A121.4O9—S1—O11i108.33 (10)
N1—C4—C3131.72 (17)O9i—S1—O11108.33 (10)
N1—C4—C6106.39 (15)O9—S1—O11108.80 (9)
C3—C4—C6121.81 (16)O11i—S1—O11108.15 (16)
N1—C5—N2110.14 (17)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.96 (6)2.26 (5)2.9012 (11)123.6
O1W—H1WA···O11i0.96 (6)2.47 (6)3.1575 (16)128.4
O4—H21···O110.851.792.6330 (11)169
N2—H22···O1Wii0.901.962.8365 (10)163
N1—H25···O11iii0.881.822.6931 (12)175
O1—H28···O9iv0.851.842.6616 (11)161
C5—H5A···O2v0.932.203.098 (3)162
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula2C9H7N2O4+·SO42·H2O
Mr528.41
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)14.691 (3), 7.7968 (17), 17.983 (4)
V3)2059.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11525, 2413, 1994
Rint0.060
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.00
No. of reflections2413
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.96 (6)2.26 (5)2.9012 (11)123.6
O1W—H1WA···O11i0.96 (6)2.47 (6)3.1575 (16)128.4
O4—H21···O110.851.792.6330 (11)169.4
N2—H22···O1Wii0.901.962.8365 (10)163.4
N1—H25···O11iii0.881.822.6931 (12)174.7
O1—H28···O9iv0.851.842.6616 (11)160.6
C5—H5A···O2v0.932.203.098 (3)162.4
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+1, z1/2.
 

Acknowledgements

This work was supported by the Beijing Municipal Natural Science Foundation (No. 2082004) and the Seventh Technology Fund for Postgraduates of Beijing University of Technology.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSakai, T., Hamada, T., Awata, N. & Watanabe, J. (1989). J. Pharmacobio-Dynam. 12, 530–536.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, E. H. & Matsuo, K. (1967). J. Org. Chem. 32, 1921–1926.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds