metal-organic compounds
Dimorpholinium pentachloridoantimonate(III)
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com
The 4H10NO)2[SbCl5], consists of two morpholinium cations in chair conformations, and a pentachloridoantimonate dianion with the SbIII ion in a slightly distorted square-pyramidal coordination environment. The morpholinium cations are connected to each other by N—H⋯O hydrogen bonds, and they link the chloride anions and the antimonate SbCl3 group via N—H⋯Cl contacts.
of the title compound, (CRelated literature
For a ); for the structure of N-methylpiperazinediium pentachloridoantimonate(III), see: Shen-Tu et al. (2008); for the low-temperature phase of morpholinium tetrafluoridoborate, see: Owczarek et al. (2008).
in bis(ethyldimethylammonium) pentachloridoantimonate(III), see: Bujak & Zaleski (1999Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809019345/si2174sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809019345/si2174Isup2.hkl
SbCl3, morpholine and 20% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous HCl.
H atoms were included in calculated positions with N—H = 0.90 and C—H = 0.97 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C, N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. | |
Fig. 2. The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines. |
(C4H10NO)2[SbCl5] | F(000) = 936 |
Mr = 475.26 | Dx = 1.882 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3845 reflections |
a = 9.0562 (18) Å | θ = 3–27.5° |
b = 10.273 (2) Å | µ = 2.44 mm−1 |
c = 18.032 (4) Å | T = 298 K |
V = 1677.6 (6) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.20 × 0.20 mm |
Rigaku Mercury2 (2× 2 bin mode) diffractometer | 3845 independent reflections |
Radiation source: fine-focus sealed tube | 3759 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −13→13 |
Tmin = 0.567, Tmax = 0.616 | l = −23→23 |
17552 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0201P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max = 0.003 |
3845 reflections | Δρmax = 0.32 e Å−3 |
163 parameters | Δρmin = −0.66 e Å−3 |
0 restraints | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.005 (15) |
(C4H10NO)2[SbCl5] | V = 1677.6 (6) Å3 |
Mr = 475.26 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.0562 (18) Å | µ = 2.44 mm−1 |
b = 10.273 (2) Å | T = 298 K |
c = 18.032 (4) Å | 0.25 × 0.20 × 0.20 mm |
Rigaku Mercury2 (2× 2 bin mode) diffractometer | 3845 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3759 reflections with I > 2σ(I) |
Tmin = 0.567, Tmax = 0.616 | Rint = 0.026 |
17552 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.046 | Δρmax = 0.32 e Å−3 |
S = 1.24 | Δρmin = −0.66 e Å−3 |
3845 reflections | Absolute structure: Flack (1983) |
163 parameters | Absolute structure parameter: −0.005 (15) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7135 (3) | 0.5818 (4) | 0.95313 (17) | 0.0425 (8) | |
H1A | 0.7413 | 0.6730 | 0.9546 | 0.051* | |
H1B | 0.7866 | 0.5329 | 0.9808 | 0.051* | |
C2 | 0.5653 (4) | 0.5651 (3) | 0.98887 (17) | 0.0431 (7) | |
H2A | 0.5395 | 0.4735 | 0.9906 | 0.052* | |
H2B | 0.5680 | 0.5980 | 1.0393 | 0.052* | |
C3 | 0.4560 (3) | 0.5973 (4) | 0.86593 (18) | 0.0459 (8) | |
H3A | 0.3890 | 0.6514 | 0.8374 | 0.055* | |
H3B | 0.4236 | 0.5076 | 0.8616 | 0.055* | |
C4 | 0.6092 (3) | 0.6104 (3) | 0.83609 (17) | 0.0440 (8) | |
H4A | 0.6114 | 0.5797 | 0.7852 | 0.053* | |
H4B | 0.6372 | 0.7016 | 0.8361 | 0.053* | |
C5 | 0.8890 (4) | 0.6967 (3) | 0.68509 (19) | 0.0461 (8) | |
H5A | 0.7903 | 0.6605 | 0.6819 | 0.055* | |
H5B | 0.9521 | 0.6478 | 0.6516 | 0.055* | |
C6 | 0.8854 (3) | 0.8366 (3) | 0.66122 (19) | 0.0442 (8) | |
H6A | 0.8495 | 0.8431 | 0.6107 | 0.053* | |
H6B | 0.8196 | 0.8858 | 0.6931 | 0.053* | |
C7 | 1.0960 (3) | 0.8730 (3) | 0.74228 (15) | 0.0376 (6) | |
H7A | 1.0382 | 0.9243 | 0.7769 | 0.045* | |
H7B | 1.1976 | 0.9028 | 0.7446 | 0.045* | |
C8 | 1.0880 (4) | 0.7312 (3) | 0.76295 (16) | 0.0411 (7) | |
H8A | 1.1510 | 0.6814 | 0.7299 | 0.049* | |
H8B | 1.1247 | 0.7199 | 0.8131 | 0.049* | |
Cl1 | 0.82449 (9) | 1.24256 (9) | 0.98134 (4) | 0.0472 (2) | |
Cl2 | 0.55039 (9) | 1.24280 (7) | 0.82480 (4) | 0.04292 (19) | |
Cl3 | 0.39146 (8) | 0.94495 (7) | 0.87224 (4) | 0.03967 (18) | |
Cl4 | 0.76734 (9) | 0.96688 (8) | 0.86621 (5) | 0.04330 (19) | |
Cl5 | 0.60479 (7) | 0.89292 (7) | 1.04341 (4) | 0.03298 (15) | |
N1 | 0.4534 (2) | 0.6378 (2) | 0.94513 (14) | 0.0407 (6) | |
H1C | 0.4718 | 0.7238 | 0.9483 | 0.049* | |
H1D | 0.3631 | 0.6231 | 0.9641 | 0.049* | |
N2 | 1.0376 (3) | 0.8903 (2) | 0.66613 (14) | 0.0365 (6) | |
H2C | 1.0966 | 0.8490 | 0.6336 | 0.044* | |
H2D | 1.0366 | 0.9754 | 0.6544 | 0.044* | |
O1 | 0.7123 (2) | 0.5387 (2) | 0.87871 (12) | 0.0377 (5) | |
O2 | 0.9422 (2) | 0.6830 (2) | 0.75855 (11) | 0.0430 (5) | |
Sb1 | 0.580748 (19) | 1.092473 (15) | 0.928491 (9) | 0.02418 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0334 (15) | 0.054 (2) | 0.0404 (17) | 0.0040 (17) | −0.0037 (13) | −0.0141 (16) |
C2 | 0.0470 (18) | 0.0450 (18) | 0.0374 (16) | −0.0036 (16) | 0.0051 (15) | −0.0036 (13) |
C3 | 0.0338 (16) | 0.053 (2) | 0.0507 (19) | 0.0112 (17) | −0.0098 (13) | −0.0112 (17) |
C4 | 0.0459 (18) | 0.0497 (19) | 0.0364 (16) | 0.0138 (17) | 0.0012 (13) | 0.0029 (14) |
C5 | 0.0397 (18) | 0.0457 (18) | 0.0531 (19) | −0.0173 (15) | −0.0041 (15) | 0.0022 (15) |
C6 | 0.0322 (16) | 0.0501 (19) | 0.0502 (19) | −0.0012 (15) | −0.0070 (14) | 0.0157 (15) |
C7 | 0.0376 (15) | 0.0393 (15) | 0.0360 (15) | −0.0078 (14) | 0.0006 (13) | −0.0015 (12) |
C8 | 0.0445 (17) | 0.0466 (17) | 0.0322 (15) | 0.0030 (17) | −0.0056 (15) | 0.0060 (12) |
Cl1 | 0.0464 (4) | 0.0481 (5) | 0.0472 (5) | −0.0051 (4) | 0.0000 (4) | −0.0024 (4) |
Cl2 | 0.0547 (5) | 0.0364 (4) | 0.0377 (4) | −0.0036 (4) | −0.0052 (3) | 0.0098 (3) |
Cl3 | 0.0387 (4) | 0.0398 (4) | 0.0405 (4) | −0.0074 (3) | −0.0098 (3) | 0.0001 (3) |
Cl4 | 0.0394 (4) | 0.0377 (4) | 0.0529 (5) | 0.0030 (4) | 0.0191 (4) | −0.0080 (3) |
Cl5 | 0.0284 (3) | 0.0367 (4) | 0.0338 (3) | 0.0025 (3) | 0.0000 (3) | 0.0024 (3) |
N1 | 0.0215 (11) | 0.0392 (14) | 0.0613 (18) | −0.0020 (10) | 0.0108 (11) | −0.0130 (12) |
N2 | 0.0381 (13) | 0.0300 (13) | 0.0413 (14) | −0.0037 (11) | 0.0054 (10) | 0.0085 (11) |
O1 | 0.0298 (11) | 0.0443 (13) | 0.0389 (12) | 0.0123 (9) | 0.0013 (9) | −0.0074 (10) |
O2 | 0.0443 (12) | 0.0420 (11) | 0.0427 (12) | −0.0127 (11) | 0.0039 (10) | 0.0146 (9) |
Sb1 | 0.02303 (8) | 0.02452 (8) | 0.02498 (8) | −0.00036 (8) | 0.00101 (7) | −0.00180 (7) |
C1—O1 | 1.413 (4) | C6—N2 | 1.487 (4) |
C1—C2 | 1.499 (4) | C6—H6A | 0.9700 |
C1—H1A | 0.9700 | C6—H6B | 0.9700 |
C1—H1B | 0.9700 | C7—N2 | 1.482 (4) |
C2—N1 | 1.485 (4) | C7—C8 | 1.506 (4) |
C2—H2A | 0.9700 | C7—H7A | 0.9700 |
C2—H2B | 0.9700 | C7—H7B | 0.9700 |
C3—N1 | 1.488 (4) | C8—O2 | 1.412 (4) |
C3—C4 | 1.494 (4) | C8—H8A | 0.9700 |
C3—H3A | 0.9700 | C8—H8B | 0.9700 |
C3—H3B | 0.9700 | Cl1—Sb1 | 2.8562 (9) |
C4—O1 | 1.416 (4) | Cl2—Sb1 | 2.4405 (8) |
C4—H4A | 0.9700 | Cl3—Sb1 | 2.5028 (8) |
C4—H4B | 0.9700 | Cl4—Sb1 | 2.4045 (8) |
C5—O2 | 1.417 (4) | N1—H1C | 0.9000 |
C5—C6 | 1.501 (4) | N1—H1D | 0.9000 |
C5—H5A | 0.9700 | N2—H2C | 0.9000 |
C5—H5B | 0.9700 | N2—H2D | 0.9000 |
O1—C1—C2 | 111.4 (2) | C5—C6—H6B | 110.0 |
O1—C1—H1A | 109.3 | H6A—C6—H6B | 108.4 |
C2—C1—H1A | 109.3 | N2—C7—C8 | 109.1 (2) |
O1—C1—H1B | 109.3 | N2—C7—H7A | 109.9 |
C2—C1—H1B | 109.3 | C8—C7—H7A | 109.9 |
H1A—C1—H1B | 108.0 | N2—C7—H7B | 109.9 |
N1—C2—C1 | 109.0 (3) | C8—C7—H7B | 109.9 |
N1—C2—H2A | 109.9 | H7A—C7—H7B | 108.3 |
C1—C2—H2A | 109.9 | O2—C8—C7 | 111.7 (3) |
N1—C2—H2B | 109.9 | O2—C8—H8A | 109.3 |
C1—C2—H2B | 109.9 | C7—C8—H8A | 109.3 |
H2A—C2—H2B | 108.3 | O2—C8—H8B | 109.3 |
N1—C3—C4 | 109.6 (2) | C7—C8—H8B | 109.3 |
N1—C3—H3A | 109.8 | H8A—C8—H8B | 107.9 |
C4—C3—H3A | 109.8 | C2—N1—C3 | 111.0 (2) |
N1—C3—H3B | 109.8 | C2—N1—H1C | 109.4 |
C4—C3—H3B | 109.8 | C3—N1—H1C | 109.4 |
H3A—C3—H3B | 108.2 | C2—N1—H1D | 109.4 |
O1—C4—C3 | 111.7 (3) | C3—N1—H1D | 109.4 |
O1—C4—H4A | 109.3 | H1C—N1—H1D | 108.0 |
C3—C4—H4A | 109.3 | C7—N2—C6 | 110.0 (2) |
O1—C4—H4B | 109.3 | C7—N2—H2C | 109.7 |
C3—C4—H4B | 109.3 | C6—N2—H2C | 109.7 |
H4A—C4—H4B | 107.9 | C7—N2—H2D | 109.7 |
O2—C5—C6 | 111.7 (3) | C6—N2—H2D | 109.7 |
O2—C5—H5A | 109.3 | H2C—N2—H2D | 108.2 |
C6—C5—H5A | 109.3 | C1—O1—C4 | 111.0 (2) |
O2—C5—H5B | 109.3 | C8—O2—C5 | 109.6 (2) |
C6—C5—H5B | 109.3 | Cl4—Sb1—Cl2 | 93.49 (3) |
H5A—C5—H5B | 107.9 | Cl4—Sb1—Cl3 | 88.12 (3) |
N2—C6—C5 | 108.5 (2) | Cl2—Sb1—Cl3 | 89.74 (3) |
N2—C6—H6A | 110.0 | Cl4—Sb1—Cl1 | 84.40 (3) |
C5—C6—H6A | 110.0 | Cl2—Sb1—Cl1 | 90.06 (3) |
N2—C6—H6B | 110.0 | Cl3—Sb1—Cl1 | 172.49 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl5i | 0.90 | 2.35 | 3.180 (2) | 154 |
C1—H1B···Cl3ii | 0.97 | 2.82 | 3.548 (3) | 132 |
N2—H2D···Cl5iii | 0.90 | 2.73 | 3.394 (2) | 131 |
N2—H2C···Cl1iv | 0.90 | 2.45 | 3.306 (3) | 159 |
N2—H2D···O1v | 0.90 | 2.44 | 2.848 (3) | 108 |
N1—H1C···Cl3 | 0.90 | 2.75 | 3.463 (3) | 137 |
N1—H1C···Cl5 | 0.90 | 2.72 | 3.448 (3) | 138 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x+1/2, −y+3/2, −z+2; (iii) −x+3/2, −y+2, z−1/2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | (C4H10NO)2[SbCl5] |
Mr | 475.26 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 9.0562 (18), 10.273 (2), 18.032 (4) |
V (Å3) | 1677.6 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.44 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury2 (2× 2 bin mode) diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.567, 0.616 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17552, 3845, 3759 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.046, 1.24 |
No. of reflections | 3845 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.66 |
Absolute structure | Flack (1983) |
Absolute structure parameter | −0.005 (15) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl5i | 0.90 | 2.35 | 3.180 (2) | 153.5 |
C1—H1B···Cl3ii | 0.97 | 2.82 | 3.548 (3) | 132.1 |
N2—H2D···Cl5iii | 0.90 | 2.73 | 3.394 (2) | 131.1 |
N2—H2C···Cl1iv | 0.90 | 2.45 | 3.306 (3) | 159.3 |
N2—H2D···O1v | 0.90 | 2.44 | 2.848 (3) | 107.9 |
N1—H1C···Cl3 | 0.90 | 2.75 | 3.463 (3) | 136.8 |
N1—H1C···Cl5 | 0.90 | 2.72 | 3.448 (3) | 138.4 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x+1/2, −y+3/2, −z+2; (iii) −x+3/2, −y+2, z−1/2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y+1/2, −z+3/2. |
References
Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Owczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667. Web of Science CrossRef IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structural investigation of crystalline solids undergoing phase transformation has been one of the classical areas of research among both chemists and physicists. The morpholinium tetrafluoroborate undergoes two reversible phase transitions (Owczarek et al. 2008). In our laboratory, a compound containing two morpholinium cations and a pentachloridoantimonate dianion in the asymmetric unit has been synthesized (Fig. 1), with the SbIII ion in a slightly distorted square-pyramidal coordination environment.
The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4045 (8) to 2.9230 (9) Å. The Sb—Cl distances are similar to the values of 2.4110 (10) to 2.9112 (11) Å reported by Shen-Tu et al. (2008) and slightly different to the values of 2.499 (4)–2.768 (4) Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl4) is ca 0.50 Å. The six-membered ring morpholinium cations have chair conformation. The morpholinium cations are connected to each other by N—H···O hydrogen bonds, and they link the Cl- anions and the antimonate group SbCl3 via N–H···Cl contacts (Table 1, Fig. 2).