metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dimorpholinium penta­chlorido­anti­monate(III)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 7 May 2009; accepted 21 May 2009; online 29 May 2009)

The asymmetric unit of the title compound, (C4H10NO)2[SbCl5], consists of two morpholinium cations in chair conformations, and a penta­chloridoanti­monate dianion with the SbIII ion in a slightly distorted square-pyramidal coordination environment. The morpholinium cations are connected to each other by N—H⋯O hydrogen bonds, and they link the chloride anions and the anti­monate SbCl3 group via N—H⋯Cl contacts.

Related literature

For a phase transition in bis­(ethyl­dimethyl­ammonium) penta­chlorido­anti­monate(III), see: Bujak & Zaleski (1999[Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.]); for the structure of N-methyl­piperazinediium penta­chlorido­­anti­monate(III), see: Shen-Tu et al. (2008[Shen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146.]); for the low-temperature phase of morpholinium tetra­fluorido­borate, see: Owczarek et al. (2008[Owczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H10NO)2[SbCl5]

  • Mr = 475.26

  • Orthorhombic, P 21 21 21

  • a = 9.0562 (18) Å

  • b = 10.273 (2) Å

  • c = 18.032 (4) Å

  • V = 1677.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 (2× 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.567, Tmax = 0.616

  • 17552 measured reflections

  • 3845 independent reflections

  • 3759 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.046

  • S = 1.24

  • 3845 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.005 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl5i 0.90 2.35 3.180 (2) 154
C1—H1B⋯Cl3ii 0.97 2.82 3.548 (3) 132
N2—H2D⋯Cl5iii 0.90 2.73 3.394 (2) 131
N2—H2C⋯Cl1iv 0.90 2.45 3.306 (3) 159
N2—H2D⋯O1v 0.90 2.44 2.848 (3) 108
N1—H1C⋯Cl3 0.90 2.75 3.463 (3) 137
N1—H1C⋯Cl5 0.90 2.72 3.448 (3) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Structural investigation of crystalline solids undergoing phase transformation has been one of the classical areas of research among both chemists and physicists. The morpholinium tetrafluoroborate undergoes two reversible phase transitions (Owczarek et al. 2008). In our laboratory, a compound containing two morpholinium cations and a pentachloridoantimonate dianion in the asymmetric unit has been synthesized (Fig. 1), with the SbIII ion in a slightly distorted square-pyramidal coordination environment.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4045 (8) to 2.9230 (9) Å. The Sb—Cl distances are similar to the values of 2.4110 (10) to 2.9112 (11) Å reported by Shen-Tu et al. (2008) and slightly different to the values of 2.499 (4)–2.768 (4) Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl4) is ca 0.50 Å. The six-membered ring morpholinium cations have chair conformation. The morpholinium cations are connected to each other by N—H···O hydrogen bonds, and they link the Cl- anions and the antimonate group SbCl3 via N–H···Cl contacts (Table 1, Fig. 2).

Related literature top

For a phase transition in bis(ethyldimethylammonium) pentachloroantimonate(III), see: Bujak & Zaleski (1999); for the structure of N-methylpiperazinediium pentachloroantimonate(III), see: Shen-Tu et al. (2008); for the low-temperature phase of morpholinium tetrafluoroborate, see: Owczarek et al. (2008).

Experimental top

SbCl3, morpholine and 20% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous HCl.

Refinement top

H atoms were included in calculated positions with N—H = 0.90 and C—H = 0.97 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.
Dimorpholinium pentachloridoantimonate(III) top
Crystal data top
(C4H10NO)2[SbCl5]F(000) = 936
Mr = 475.26Dx = 1.882 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3845 reflections
a = 9.0562 (18) Åθ = 3–27.5°
b = 10.273 (2) ŵ = 2.44 mm1
c = 18.032 (4) ÅT = 298 K
V = 1677.6 (6) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2× 2 bin mode)
diffractometer
3845 independent reflections
Radiation source: fine-focus sealed tube3759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.567, Tmax = 0.616l = 2323
17552 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0201P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.003
3845 reflectionsΔρmax = 0.32 e Å3
163 parametersΔρmin = 0.66 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (15)
Crystal data top
(C4H10NO)2[SbCl5]V = 1677.6 (6) Å3
Mr = 475.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0562 (18) ŵ = 2.44 mm1
b = 10.273 (2) ÅT = 298 K
c = 18.032 (4) Å0.25 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 (2× 2 bin mode)
diffractometer
3845 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3759 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.616Rint = 0.026
17552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.32 e Å3
S = 1.24Δρmin = 0.66 e Å3
3845 reflectionsAbsolute structure: Flack (1983)
163 parametersAbsolute structure parameter: 0.005 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7135 (3)0.5818 (4)0.95313 (17)0.0425 (8)
H1A0.74130.67300.95460.051*
H1B0.78660.53290.98080.051*
C20.5653 (4)0.5651 (3)0.98887 (17)0.0431 (7)
H2A0.53950.47350.99060.052*
H2B0.56800.59801.03930.052*
C30.4560 (3)0.5973 (4)0.86593 (18)0.0459 (8)
H3A0.38900.65140.83740.055*
H3B0.42360.50760.86160.055*
C40.6092 (3)0.6104 (3)0.83609 (17)0.0440 (8)
H4A0.61140.57970.78520.053*
H4B0.63720.70160.83610.053*
C50.8890 (4)0.6967 (3)0.68509 (19)0.0461 (8)
H5A0.79030.66050.68190.055*
H5B0.95210.64780.65160.055*
C60.8854 (3)0.8366 (3)0.66122 (19)0.0442 (8)
H6A0.84950.84310.61070.053*
H6B0.81960.88580.69310.053*
C71.0960 (3)0.8730 (3)0.74228 (15)0.0376 (6)
H7A1.03820.92430.77690.045*
H7B1.19760.90280.74460.045*
C81.0880 (4)0.7312 (3)0.76295 (16)0.0411 (7)
H8A1.15100.68140.72990.049*
H8B1.12470.71990.81310.049*
Cl10.82449 (9)1.24256 (9)0.98134 (4)0.0472 (2)
Cl20.55039 (9)1.24280 (7)0.82480 (4)0.04292 (19)
Cl30.39146 (8)0.94495 (7)0.87224 (4)0.03967 (18)
Cl40.76734 (9)0.96688 (8)0.86621 (5)0.04330 (19)
Cl50.60479 (7)0.89292 (7)1.04341 (4)0.03298 (15)
N10.4534 (2)0.6378 (2)0.94513 (14)0.0407 (6)
H1C0.47180.72380.94830.049*
H1D0.36310.62310.96410.049*
N21.0376 (3)0.8903 (2)0.66613 (14)0.0365 (6)
H2C1.09660.84900.63360.044*
H2D1.03660.97540.65440.044*
O10.7123 (2)0.5387 (2)0.87871 (12)0.0377 (5)
O20.9422 (2)0.6830 (2)0.75855 (11)0.0430 (5)
Sb10.580748 (19)1.092473 (15)0.928491 (9)0.02418 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (15)0.054 (2)0.0404 (17)0.0040 (17)0.0037 (13)0.0141 (16)
C20.0470 (18)0.0450 (18)0.0374 (16)0.0036 (16)0.0051 (15)0.0036 (13)
C30.0338 (16)0.053 (2)0.0507 (19)0.0112 (17)0.0098 (13)0.0112 (17)
C40.0459 (18)0.0497 (19)0.0364 (16)0.0138 (17)0.0012 (13)0.0029 (14)
C50.0397 (18)0.0457 (18)0.0531 (19)0.0173 (15)0.0041 (15)0.0022 (15)
C60.0322 (16)0.0501 (19)0.0502 (19)0.0012 (15)0.0070 (14)0.0157 (15)
C70.0376 (15)0.0393 (15)0.0360 (15)0.0078 (14)0.0006 (13)0.0015 (12)
C80.0445 (17)0.0466 (17)0.0322 (15)0.0030 (17)0.0056 (15)0.0060 (12)
Cl10.0464 (4)0.0481 (5)0.0472 (5)0.0051 (4)0.0000 (4)0.0024 (4)
Cl20.0547 (5)0.0364 (4)0.0377 (4)0.0036 (4)0.0052 (3)0.0098 (3)
Cl30.0387 (4)0.0398 (4)0.0405 (4)0.0074 (3)0.0098 (3)0.0001 (3)
Cl40.0394 (4)0.0377 (4)0.0529 (5)0.0030 (4)0.0191 (4)0.0080 (3)
Cl50.0284 (3)0.0367 (4)0.0338 (3)0.0025 (3)0.0000 (3)0.0024 (3)
N10.0215 (11)0.0392 (14)0.0613 (18)0.0020 (10)0.0108 (11)0.0130 (12)
N20.0381 (13)0.0300 (13)0.0413 (14)0.0037 (11)0.0054 (10)0.0085 (11)
O10.0298 (11)0.0443 (13)0.0389 (12)0.0123 (9)0.0013 (9)0.0074 (10)
O20.0443 (12)0.0420 (11)0.0427 (12)0.0127 (11)0.0039 (10)0.0146 (9)
Sb10.02303 (8)0.02452 (8)0.02498 (8)0.00036 (8)0.00101 (7)0.00180 (7)
Geometric parameters (Å, º) top
C1—O11.413 (4)C6—N21.487 (4)
C1—C21.499 (4)C6—H6A0.9700
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C7—N21.482 (4)
C2—N11.485 (4)C7—C81.506 (4)
C2—H2A0.9700C7—H7A0.9700
C2—H2B0.9700C7—H7B0.9700
C3—N11.488 (4)C8—O21.412 (4)
C3—C41.494 (4)C8—H8A0.9700
C3—H3A0.9700C8—H8B0.9700
C3—H3B0.9700Cl1—Sb12.8562 (9)
C4—O11.416 (4)Cl2—Sb12.4405 (8)
C4—H4A0.9700Cl3—Sb12.5028 (8)
C4—H4B0.9700Cl4—Sb12.4045 (8)
C5—O21.417 (4)N1—H1C0.9000
C5—C61.501 (4)N1—H1D0.9000
C5—H5A0.9700N2—H2C0.9000
C5—H5B0.9700N2—H2D0.9000
O1—C1—C2111.4 (2)C5—C6—H6B110.0
O1—C1—H1A109.3H6A—C6—H6B108.4
C2—C1—H1A109.3N2—C7—C8109.1 (2)
O1—C1—H1B109.3N2—C7—H7A109.9
C2—C1—H1B109.3C8—C7—H7A109.9
H1A—C1—H1B108.0N2—C7—H7B109.9
N1—C2—C1109.0 (3)C8—C7—H7B109.9
N1—C2—H2A109.9H7A—C7—H7B108.3
C1—C2—H2A109.9O2—C8—C7111.7 (3)
N1—C2—H2B109.9O2—C8—H8A109.3
C1—C2—H2B109.9C7—C8—H8A109.3
H2A—C2—H2B108.3O2—C8—H8B109.3
N1—C3—C4109.6 (2)C7—C8—H8B109.3
N1—C3—H3A109.8H8A—C8—H8B107.9
C4—C3—H3A109.8C2—N1—C3111.0 (2)
N1—C3—H3B109.8C2—N1—H1C109.4
C4—C3—H3B109.8C3—N1—H1C109.4
H3A—C3—H3B108.2C2—N1—H1D109.4
O1—C4—C3111.7 (3)C3—N1—H1D109.4
O1—C4—H4A109.3H1C—N1—H1D108.0
C3—C4—H4A109.3C7—N2—C6110.0 (2)
O1—C4—H4B109.3C7—N2—H2C109.7
C3—C4—H4B109.3C6—N2—H2C109.7
H4A—C4—H4B107.9C7—N2—H2D109.7
O2—C5—C6111.7 (3)C6—N2—H2D109.7
O2—C5—H5A109.3H2C—N2—H2D108.2
C6—C5—H5A109.3C1—O1—C4111.0 (2)
O2—C5—H5B109.3C8—O2—C5109.6 (2)
C6—C5—H5B109.3Cl4—Sb1—Cl293.49 (3)
H5A—C5—H5B107.9Cl4—Sb1—Cl388.12 (3)
N2—C6—C5108.5 (2)Cl2—Sb1—Cl389.74 (3)
N2—C6—H6A110.0Cl4—Sb1—Cl184.40 (3)
C5—C6—H6A110.0Cl2—Sb1—Cl190.06 (3)
N2—C6—H6B110.0Cl3—Sb1—Cl1172.49 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl5i0.902.353.180 (2)154
C1—H1B···Cl3ii0.972.823.548 (3)132
N2—H2D···Cl5iii0.902.733.394 (2)131
N2—H2C···Cl1iv0.902.453.306 (3)159
N2—H2D···O1v0.902.442.848 (3)108
N1—H1C···Cl30.902.753.463 (3)137
N1—H1C···Cl50.902.723.448 (3)138
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x+3/2, y+2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C4H10NO)2[SbCl5]
Mr475.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.0562 (18), 10.273 (2), 18.032 (4)
V3)1677.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2 (2× 2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.567, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
17552, 3845, 3759
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.046, 1.24
No. of reflections3845
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.66
Absolute structureFlack (1983)
Absolute structure parameter0.005 (15)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl5i0.902.353.180 (2)153.5
C1—H1B···Cl3ii0.972.823.548 (3)132.1
N2—H2D···Cl5iii0.902.733.394 (2)131.1
N2—H2C···Cl1iv0.902.453.306 (3)159.3
N2—H2D···O1v0.902.442.848 (3)107.9
N1—H1C···Cl30.902.753.463 (3)136.8
N1—H1C···Cl50.902.723.448 (3)138.4
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+3/2, z+2; (iii) x+3/2, y+2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1/2, z+3/2.
 

References

First citationBujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOwczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds