organic compounds
(E)-3-[4-(Hexyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my
In the title compound, C21H24O3, the conformation of the enone group is s–cis. The benzene rings are inclined at an angle of 7.9 (1)°. The alkoxy tail is planar, with a maximum deviation from the least-squares plane of 0.009 (2) Å, and adopts a trans conformation throughout. An intramolecular O—H⋯O interaction between the keto and hydroxy groups forms S(6) ring motifs. In the crystal, molecules are arranged in a head-to-tail manner down the a axis and are subsequently stacked along the b axis, forming molecular sheets parallel to the ab plane. The is further stabilized by weak C—H⋯π interactions and short C⋯O [3.376 (2) Å] contacts.
Related literature
For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak, Fun, Ngaini, Rahman & Hussain (2009); Razak, Fun, Ngaini, Fadzillah & Hussain (2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809017577/sj2623sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809017577/sj2623Isup2.hkl
A mixture of 2-hydroxyacetophenone (2.72 ml, 20 mmol) and 4-hexyloxybenzaldehyde (4.12 ml, 20 mmol) and KOH (4.04 g, 72 mmol) in 60 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 M). The resulting precipitate was filtered, washed and dried. After redissolving in hexane, followed by few days of slow evaporation, crystals were collected.
The O-bound H atom was located in a difference Fourier map and refined freely. All the C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was applied for the methyl group.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C21H24O3 | F(000) = 696 |
Mr = 324.40 | Dx = 1.256 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3217 reflections |
a = 19.6443 (5) Å | θ = 3.0–30.0° |
b = 7.1966 (2) Å | µ = 0.08 mm−1 |
c = 12.6520 (3) Å | T = 100 K |
β = 106.438 (2)° | Needle, yellow |
V = 1715.53 (8) Å3 | 0.47 × 0.12 × 0.04 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 5025 independent reflections |
Radiation source: sealed tube | 2783 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ϕ and ω scans | θmax = 30.1°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −27→27 |
Tmin = 0.962, Tmax = 0.997 | k = −9→10 |
20873 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0907P)2] where P = (Fo2 + 2Fc2)/3 |
5025 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C21H24O3 | V = 1715.53 (8) Å3 |
Mr = 324.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 19.6443 (5) Å | µ = 0.08 mm−1 |
b = 7.1966 (2) Å | T = 100 K |
c = 12.6520 (3) Å | 0.47 × 0.12 × 0.04 mm |
β = 106.438 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5025 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2783 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.997 | Rint = 0.057 |
20873 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.53 e Å−3 |
5025 reflections | Δρmin = −0.29 e Å−3 |
222 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31582 (7) | 0.61343 (19) | −0.09249 (11) | 0.0210 (3) | |
O2 | 0.20488 (6) | 0.60487 (18) | −0.03200 (11) | 0.0203 (3) | |
O3 | −0.06969 (6) | 0.61140 (17) | 0.36275 (11) | 0.0168 (3) | |
C1 | 0.35907 (9) | 0.6404 (2) | 0.20871 (16) | 0.0159 (4) | |
H1A | 0.3371 | 0.6462 | 0.2648 | 0.019* | |
C2 | 0.43212 (9) | 0.6445 (3) | 0.23554 (17) | 0.0202 (4) | |
H2A | 0.4590 | 0.6512 | 0.3089 | 0.024* | |
C3 | 0.46535 (9) | 0.6386 (3) | 0.15149 (16) | 0.0194 (4) | |
H3A | 0.5146 | 0.6415 | 0.1691 | 0.023* | |
C4 | 0.42582 (9) | 0.6283 (3) | 0.04267 (16) | 0.0175 (4) | |
H4A | 0.4485 | 0.6249 | −0.0126 | 0.021* | |
C5 | 0.35182 (9) | 0.6230 (2) | 0.01518 (15) | 0.0149 (4) | |
C6 | 0.31698 (9) | 0.6276 (2) | 0.09933 (15) | 0.0137 (4) | |
C7 | 0.23827 (9) | 0.6181 (2) | 0.06736 (15) | 0.0138 (4) | |
C8 | 0.19935 (9) | 0.6221 (2) | 0.15096 (16) | 0.0146 (4) | |
H8A | 0.2236 | 0.6250 | 0.2256 | 0.018* | |
C9 | 0.12783 (9) | 0.6216 (2) | 0.11734 (16) | 0.0153 (4) | |
H9A | 0.1076 | 0.6215 | 0.0414 | 0.018* | |
C10 | 0.07792 (8) | 0.6213 (2) | 0.18274 (15) | 0.0130 (4) | |
C11 | 0.00511 (9) | 0.6329 (2) | 0.12710 (16) | 0.0154 (4) | |
H11A | −0.0091 | 0.6438 | 0.0507 | 0.018* | |
C12 | −0.04606 (9) | 0.6284 (3) | 0.18360 (16) | 0.0160 (4) | |
H12A | −0.0940 | 0.6344 | 0.1454 | 0.019* | |
C13 | −0.02488 (9) | 0.6148 (2) | 0.29733 (16) | 0.0135 (4) | |
C14 | 0.04731 (9) | 0.6028 (2) | 0.35469 (16) | 0.0156 (4) | |
H14A | 0.0612 | 0.5925 | 0.4311 | 0.019* | |
C15 | 0.09760 (9) | 0.6064 (2) | 0.29794 (16) | 0.0154 (4) | |
H15A | 0.1454 | 0.5988 | 0.3366 | 0.019* | |
C16 | −0.14479 (8) | 0.6211 (3) | 0.31008 (15) | 0.0153 (4) | |
H16A | −0.1602 | 0.5148 | 0.2621 | 0.018* | |
H16B | −0.1565 | 0.7335 | 0.2664 | 0.018* | |
C17 | −0.18025 (9) | 0.6212 (3) | 0.40186 (15) | 0.0151 (4) | |
H17A | −0.1631 | 0.7269 | 0.4496 | 0.018* | |
H17B | −0.1667 | 0.5094 | 0.4455 | 0.018* | |
C18 | −0.26094 (9) | 0.6306 (3) | 0.36018 (15) | 0.0149 (4) | |
H18A | −0.2785 | 0.5255 | 0.3122 | 0.018* | |
H18B | −0.2750 | 0.7434 | 0.3176 | 0.018* | |
C19 | −0.29383 (9) | 0.6284 (3) | 0.45638 (15) | 0.0144 (4) | |
H19A | −0.2785 | 0.5166 | 0.4994 | 0.017* | |
H19B | −0.2759 | 0.7341 | 0.5037 | 0.017* | |
C20 | −0.37459 (9) | 0.6351 (3) | 0.42130 (16) | 0.0162 (4) | |
H20A | −0.3931 | 0.5290 | 0.3747 | 0.019* | |
H20B | −0.3904 | 0.7469 | 0.3786 | 0.019* | |
C21 | −0.40379 (9) | 0.6331 (3) | 0.52132 (17) | 0.0219 (5) | |
H21A | −0.4547 | 0.6385 | 0.4969 | 0.033* | |
H21B | −0.3859 | 0.7386 | 0.5672 | 0.033* | |
H21C | −0.3892 | 0.5210 | 0.5626 | 0.033* | |
H1O1 | 0.2698 (14) | 0.605 (3) | −0.094 (2) | 0.059 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0199 (7) | 0.0333 (9) | 0.0108 (7) | −0.0030 (6) | 0.0060 (6) | 0.0011 (6) |
O2 | 0.0166 (6) | 0.0309 (8) | 0.0131 (7) | 0.0007 (6) | 0.0035 (6) | 0.0021 (6) |
O3 | 0.0115 (6) | 0.0264 (8) | 0.0139 (7) | 0.0003 (5) | 0.0060 (5) | −0.0003 (6) |
C1 | 0.0167 (8) | 0.0195 (10) | 0.0137 (10) | 0.0012 (8) | 0.0078 (7) | 0.0006 (8) |
C2 | 0.0174 (9) | 0.0295 (12) | 0.0132 (10) | −0.0017 (8) | 0.0035 (8) | 0.0002 (9) |
C3 | 0.0142 (8) | 0.0238 (11) | 0.0213 (11) | −0.0006 (8) | 0.0068 (8) | 0.0018 (9) |
C4 | 0.0179 (8) | 0.0193 (10) | 0.0198 (11) | 0.0006 (8) | 0.0125 (8) | 0.0021 (9) |
C5 | 0.0203 (9) | 0.0132 (10) | 0.0127 (10) | −0.0009 (7) | 0.0071 (8) | 0.0018 (8) |
C6 | 0.0149 (8) | 0.0130 (10) | 0.0146 (10) | 0.0012 (7) | 0.0068 (7) | 0.0004 (8) |
C7 | 0.0154 (8) | 0.0125 (9) | 0.0147 (10) | 0.0010 (7) | 0.0061 (7) | 0.0016 (8) |
C8 | 0.0149 (8) | 0.0162 (10) | 0.0135 (10) | 0.0005 (7) | 0.0055 (7) | 0.0018 (8) |
C9 | 0.0164 (8) | 0.0146 (10) | 0.0157 (10) | 0.0012 (7) | 0.0061 (7) | 0.0005 (8) |
C10 | 0.0122 (8) | 0.0126 (9) | 0.0149 (10) | −0.0001 (7) | 0.0049 (7) | −0.0004 (8) |
C11 | 0.0162 (8) | 0.0180 (10) | 0.0119 (10) | 0.0012 (7) | 0.0041 (7) | 0.0008 (8) |
C12 | 0.0120 (8) | 0.0196 (10) | 0.0168 (10) | 0.0023 (7) | 0.0046 (7) | 0.0017 (9) |
C13 | 0.0135 (8) | 0.0132 (9) | 0.0152 (10) | 0.0000 (7) | 0.0062 (7) | −0.0021 (8) |
C14 | 0.0152 (8) | 0.0202 (11) | 0.0111 (10) | −0.0004 (7) | 0.0031 (7) | 0.0007 (8) |
C15 | 0.0115 (8) | 0.0173 (10) | 0.0170 (10) | −0.0010 (7) | 0.0033 (7) | −0.0027 (8) |
C16 | 0.0102 (7) | 0.0197 (10) | 0.0156 (10) | 0.0000 (7) | 0.0030 (7) | −0.0002 (8) |
C17 | 0.0145 (8) | 0.0177 (10) | 0.0142 (10) | 0.0016 (7) | 0.0061 (7) | 0.0004 (8) |
C18 | 0.0148 (8) | 0.0167 (10) | 0.0153 (10) | −0.0005 (7) | 0.0076 (7) | −0.0008 (8) |
C19 | 0.0148 (8) | 0.0158 (10) | 0.0138 (10) | 0.0000 (7) | 0.0060 (7) | 0.0003 (8) |
C20 | 0.0150 (8) | 0.0172 (10) | 0.0175 (10) | −0.0002 (7) | 0.0065 (7) | 0.0011 (8) |
C21 | 0.0176 (9) | 0.0283 (12) | 0.0231 (12) | 0.0018 (8) | 0.0112 (8) | 0.0040 (10) |
O1—C5 | 1.347 (2) | C12—C13 | 1.384 (3) |
O1—H1O1 | 0.90 (3) | C12—H12A | 0.9300 |
O2—C7 | 1.246 (2) | C13—C14 | 1.401 (2) |
O3—C13 | 1.369 (2) | C14—C15 | 1.376 (2) |
O3—C16 | 1.438 (2) | C14—H14A | 0.9300 |
C1—C2 | 1.378 (2) | C15—H15A | 0.9300 |
C1—C6 | 1.400 (3) | C16—C17 | 1.514 (2) |
C1—H1A | 0.9300 | C16—H16A | 0.9700 |
C2—C3 | 1.397 (3) | C16—H16B | 0.9700 |
C2—H2A | 0.9300 | C17—C18 | 1.524 (2) |
C3—C4 | 1.378 (3) | C17—H17A | 0.9700 |
C3—H3A | 0.9300 | C17—H17B | 0.9700 |
C4—C5 | 1.396 (2) | C18—C19 | 1.531 (2) |
C4—H4A | 0.9300 | C18—H18A | 0.9700 |
C5—C6 | 1.420 (2) | C18—H18B | 0.9700 |
C6—C7 | 1.485 (2) | C19—C20 | 1.522 (2) |
C7—C8 | 1.470 (2) | C19—H19A | 0.9700 |
C8—C9 | 1.348 (2) | C19—H19B | 0.9700 |
C8—H8A | 0.9300 | C20—C21 | 1.530 (3) |
C9—C10 | 1.451 (2) | C20—H20A | 0.9700 |
C9—H9A | 0.9300 | C20—H20B | 0.9700 |
C10—C15 | 1.402 (3) | C21—H21A | 0.9600 |
C10—C11 | 1.406 (2) | C21—H21B | 0.9600 |
C11—C12 | 1.389 (2) | C21—H21C | 0.9600 |
C11—H11A | 0.9300 | ||
C5—O1—H1O1 | 105.5 (18) | C15—C14—H14A | 120.0 |
C13—O3—C16 | 118.03 (14) | C13—C14—H14A | 120.0 |
C2—C1—C6 | 121.83 (17) | C14—C15—C10 | 121.08 (16) |
C2—C1—H1A | 119.1 | C14—C15—H15A | 119.5 |
C6—C1—H1A | 119.1 | C10—C15—H15A | 119.5 |
C1—C2—C3 | 119.35 (19) | O3—C16—C17 | 106.20 (15) |
C1—C2—H2A | 120.3 | O3—C16—H16A | 110.5 |
C3—C2—H2A | 120.3 | C17—C16—H16A | 110.5 |
C4—C3—C2 | 120.63 (17) | O3—C16—H16B | 110.5 |
C4—C3—H3A | 119.7 | C17—C16—H16B | 110.5 |
C2—C3—H3A | 119.7 | H16A—C16—H16B | 108.7 |
C3—C4—C5 | 120.20 (17) | C16—C17—C18 | 113.20 (15) |
C3—C4—H4A | 119.9 | C16—C17—H17A | 108.9 |
C5—C4—H4A | 119.9 | C18—C17—H17A | 108.9 |
O1—C5—C4 | 117.70 (16) | C16—C17—H17B | 108.9 |
O1—C5—C6 | 122.21 (16) | C18—C17—H17B | 108.9 |
C4—C5—C6 | 120.09 (17) | H17A—C17—H17B | 107.8 |
C1—C6—C5 | 117.89 (15) | C17—C18—C19 | 110.86 (15) |
C1—C6—C7 | 123.40 (16) | C17—C18—H18A | 109.5 |
C5—C6—C7 | 118.71 (17) | C19—C18—H18A | 109.5 |
O2—C7—C8 | 119.66 (16) | C17—C18—H18B | 109.5 |
O2—C7—C6 | 119.24 (15) | C19—C18—H18B | 109.5 |
C8—C7—C6 | 121.09 (17) | H18A—C18—H18B | 108.1 |
C9—C8—C7 | 118.73 (18) | C20—C19—C18 | 114.03 (15) |
C9—C8—H8A | 120.6 | C20—C19—H19A | 108.7 |
C7—C8—H8A | 120.6 | C18—C19—H19A | 108.7 |
C8—C9—C10 | 129.22 (19) | C20—C19—H19B | 108.7 |
C8—C9—H9A | 115.4 | C18—C19—H19B | 108.7 |
C10—C9—H9A | 115.4 | H19A—C19—H19B | 107.6 |
C15—C10—C11 | 117.84 (15) | C19—C20—C21 | 111.23 (16) |
C15—C10—C9 | 124.12 (16) | C19—C20—H20A | 109.4 |
C11—C10—C9 | 118.03 (17) | C21—C20—H20A | 109.4 |
C12—C11—C10 | 121.51 (17) | C19—C20—H20B | 109.4 |
C12—C11—H11A | 119.2 | C21—C20—H20B | 109.4 |
C10—C11—H11A | 119.2 | H20A—C20—H20B | 108.0 |
C13—C12—C11 | 119.23 (16) | C20—C21—H21A | 109.5 |
C13—C12—H12A | 120.4 | C20—C21—H21B | 109.5 |
C11—C12—H12A | 120.4 | H21A—C21—H21B | 109.5 |
O3—C13—C12 | 125.07 (15) | C20—C21—H21C | 109.5 |
O3—C13—C14 | 114.56 (16) | H21A—C21—H21C | 109.5 |
C12—C13—C14 | 120.37 (16) | H21B—C21—H21C | 109.5 |
C15—C14—C13 | 119.97 (17) | ||
C6—C1—C2—C3 | 0.9 (3) | C8—C9—C10—C11 | 175.97 (18) |
C1—C2—C3—C4 | −0.1 (3) | C15—C10—C11—C12 | −0.5 (3) |
C2—C3—C4—C5 | −0.2 (3) | C9—C10—C11—C12 | 178.26 (17) |
C3—C4—C5—O1 | 179.86 (18) | C10—C11—C12—C13 | 0.9 (3) |
C3—C4—C5—C6 | −0.2 (3) | C16—O3—C13—C12 | 0.5 (2) |
C2—C1—C6—C5 | −1.3 (3) | C16—O3—C13—C14 | −179.34 (15) |
C2—C1—C6—C7 | 178.43 (16) | C11—C12—C13—O3 | 179.13 (17) |
O1—C5—C6—C1 | −179.10 (17) | C11—C12—C13—C14 | −1.0 (3) |
C4—C5—C6—C1 | 1.0 (3) | O3—C13—C14—C15 | −179.48 (16) |
O1—C5—C6—C7 | 1.1 (3) | C12—C13—C14—C15 | 0.6 (3) |
C4—C5—C6—C7 | −178.82 (16) | C13—C14—C15—C10 | −0.2 (3) |
C1—C6—C7—O2 | −179.21 (18) | C11—C10—C15—C14 | 0.1 (3) |
C5—C6—C7—O2 | 0.6 (3) | C9—C10—C15—C14 | −178.55 (17) |
C1—C6—C7—C8 | 0.2 (3) | C13—O3—C16—C17 | −178.12 (14) |
C5—C6—C7—C8 | 179.95 (16) | O3—C16—C17—C18 | −179.87 (14) |
O2—C7—C8—C9 | −3.6 (3) | C16—C17—C18—C19 | 179.43 (15) |
C6—C7—C8—C9 | 177.02 (16) | C17—C18—C19—C20 | −179.30 (15) |
C7—C8—C9—C10 | 178.62 (18) | C18—C19—C20—C21 | −179.83 (15) |
C8—C9—C10—C15 | −5.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.90 (3) | 1.68 (3) | 2.507 (2) | 152 (2) |
C20—H20A···Cg1i | 0.97 | 2.84 | 3.657 (2) | 142 |
C20—H20B···Cg1ii | 0.97 | 2.78 | 3.637 (2) | 147 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H24O3 |
Mr | 324.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 19.6443 (5), 7.1966 (2), 12.6520 (3) |
β (°) | 106.438 (2) |
V (Å3) | 1715.53 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.47 × 0.12 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.962, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20873, 5025, 2783 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.190, 1.05 |
No. of reflections | 5025 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.29 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.90 (3) | 1.68 (3) | 2.507 (2) | 152 (2) |
C20—H20A···Cg1i | 0.97 | 2.84 | 3.657 (2) | 142 |
C20—H20B···Cg1ii | 0.97 | 2.78 | 3.637 (2) | 147 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2. |
Acknowledgements
HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312 and for the Research University Golden Goose grant No.1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028–1031. Web of Science CrossRef PubMed CAS Google Scholar
Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753. Web of Science CrossRef PubMed CAS Google Scholar
Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The biological properties of chalcones derivatives, such as their anticancer (Bhat et al., 2005), antimalarial (Xue et al., 2004), antiangiogenic and antitumour (Lee et al., 2006) and antiplatelet (Zhao et al., 2005) activities, have been extensively reported. Synthetic and naturally occurring chalcones are of interest and have been widely studied and developed as one of the pharmaceutically important molecules. As part of our studies, we have synthesized the title chalcone derivative, (I). Its antibacterial activity was tested against E. coli ATCC 8739 and the compound demonstrated antimicrobial activity. In this paper, we report the crystal structure of the title compound.
The bond lengths observed in the title compound (Fig.1) are comparable with those reported by Allen et al. (1987). The enone (O2/C7—C9) moiety adopts s-cis conformation with a O2—C7—C8—C9 torsion angle of -3.6 (3)°. The mean plane through the enone moiety makes dihedral angles of 0.89 (1)° and 7.9 (1)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between the two benzene rings is 7.9 (1)°.
The slight opening of the C1—C6—C7 (123.4 (2)°) and C6—C7—C8 (121.1 (2)°) angles is the result of the short H1A···H8A (2.15 Å) contact whereas close interatomic contact between H8A and H15A (2.36 Å) widened the C8—C9—C10 and C9—C10—C15 angles to 129.2 (2)° and 124.1 (2)°, respectively. Likewise, strain induced by short H12A···H16A (2.39 Å) and H12A···H16B (2.33 Å) contacts resulted in the opening of the O3—C13—C12 (125.1 (2)°) angle. Similar features were also reported in related structures (Razak, Fun, Ngaini, Rahman et al., 2009; Razak, Fun, Ngaini, Fadzillah & Hussain, 2009a,b; Ngaini, Fadzillah et al., 2009; Ngaini, Rahman et al., 2009).
The zigzag alkoxyl tail adopts an all-trans conformation with the largest deviation from the ideal value being -179.3 (2)° for C17—C18—C19—C20 torsion angle. The alkoxyl chain is planar with the maximum deviation from the least-squares plane of 0.009 (2)Å at C18. The zigzag plane makes a dihedral angle of 2.2 (1)° with the attached benzene ring.
The keto and hydroxy groups in the molecule form an intramolecular O1—H1O1···O2 interaction (Table 1) generating a ring of graph-set motif S(6) (Bernstein et al., 1995). In the crystal structure, the molecules are arranged into a head-to-tail manner down the a axis (Fig. 2). Molecules are subsequently stacked along the b axis, forming molecular sheets parallel to the ab plane. In the absence of conventional hydrogen bonds, the crystal packing is strengthened by the presence of weak C—H···π interactions between atom C20 of the alkoxyl tail and the C1—C6 benzene ring (Table 1). There is also a short C···O (x, 1.5-y, 0.5+z ) [3.376 (2)Å] contact.