organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-3,5-di­iodo­benzyl­­idene)-2-meth­oxy­benzohydrazide

aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, People's Republic of China, and bSchool of Foreign Languages, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: sanjunpeng@163.com

(Received 14 May 2009; accepted 20 May 2009; online 29 May 2009)

The title compound, C15H12I2N2O3, was synthesized by the condensation of equimolar amounts of 3,5-diiodo­salicylaldehyde and 2-methoxy­benzohydrazide in a methanol solution. There are two independent mol­ecules, A and B, in the asymmetric unit. The dihedral angle between the two benzene rings is 30.2 (2)° for mol­ecule A and 21.7 (2)° for mol­ecule B. There are intra­molecular O—H⋯N and N—H⋯O hydrogen bonds in each mol­ecule. The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio.

Related literature

For background to Schiff bases and their complexes, see: Ali et al. (2005[Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433-m434.]). For related structures, see: Yehye et al. (2008a[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, o960.],b[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, o1452.]); Jing et al. (2006[Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087-o4088.]); Ling et al. (2008[Ling, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, o948.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12I2N2O3

  • Mr = 522.07

  • Orthorhombic, P n a 21

  • a = 16.073 (2) Å

  • b = 15.628 (2) Å

  • c = 13.284 (1) Å

  • V = 3336.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.78 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.432, Tmax = 0.469

  • 26178 measured reflections

  • 7237 independent reflections

  • 4902 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.101

  • S = 1.00

  • 7237 reflections

  • 407 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3436 Friedel pairs

  • Flack parameter: 0.59 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3 0.82 1.90 2.577 (8) 139
O1—H1⋯N1 0.82 1.92 2.568 (8) 136
N2—H2⋯O3 0.90 (3) 1.91 (6) 2.613 (8) 134 (8)
N4—H4B⋯O6 0.89 (5) 1.98 (7) 2.629 (9) 128 (7)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases such as hydrazides are known to act as versatile ligands in coordination chemistry (Ali et al., 2005). We report herein the crystal structure of the new title benzohydrazide derivative (I), Fig. 1.

Compound (I) consists two independent molecules, A and B in the asymmetric unit. The dihedral angles between the two benzene rings are 30.2 (2)° for A and 21.7 (2)° for B, respectively. All the bond lengths are comparable to those observed in other similar compounds (Yehye et al., 2008a,b; Jing et al., 2006); Ling et al., 2008). There are two intramolecular O–H···N and N–H···O hydrogen bonds (Table 1) in each molecule.

Related literature top

For background to Schiff bases and their complexes, see: Ali et al. (2005). For related structures, see: Yehye et al. (2008a,b); Jing et al. (2006); Ling et al. (2008).

Experimental top

2-Methoxybenzohydrazide (0.1 mmol, 16.6 mg) and 3,5-diiodosalicylaldehyde (0.1 mmol, 37.4 mg) were stirred at 318 K in methanol (10 ml) for 30 min. The filtrate was kept in air for a few days depositing colorless block-like crystals of (I).

Refinement top

The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio. The number of Friedel pairs in the data set is 3436. Atoms H2 and H4B were located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with Uiso set to 0.08 Å2. All H atoms bound to carbon and oxygen were refined using riding models with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å, Uiso = 1.2Ueq(C) and 1.5Ueq(O and methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
N'-(2-Hydroxy-3,5-diiodobenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H12I2N2O3F(000) = 1968
Mr = 522.07Dx = 2.078 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4242 reflections
a = 16.073 (2) Åθ = 2.3–24.5°
b = 15.628 (2) ŵ = 3.78 mm1
c = 13.284 (1) ÅT = 298 K
V = 3336.8 (6) Å3Block, colorless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7237 independent reflections
Radiation source: fine-focus sealed tube4902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2020
Tmin = 0.432, Tmax = 0.469k = 1919
26178 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7237 reflectionsΔρmax = 0.78 e Å3
407 parametersΔρmin = 0.56 e Å3
3 restraintsAbsolute structure: Flack (1983), 3436 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.59 (3)
Crystal data top
C15H12I2N2O3V = 3336.8 (6) Å3
Mr = 522.07Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 16.073 (2) ŵ = 3.78 mm1
b = 15.628 (2) ÅT = 298 K
c = 13.284 (1) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7237 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4902 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.469Rint = 0.053
26178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.78 e Å3
S = 1.00Δρmin = 0.56 e Å3
7237 reflectionsAbsolute structure: Flack (1983), 3436 Friedel pairs
407 parametersAbsolute structure parameter: 0.59 (3)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I30.40540 (3)0.37109 (4)0.59648 (6)0.0789 (2)
I40.75672 (4)0.29448 (4)0.71249 (6)0.0744 (2)
O40.4652 (3)0.5530 (4)0.6664 (5)0.0592 (16)
H40.47520.59740.69710.071*
O50.4563 (4)0.7984 (3)0.7103 (6)0.0738 (18)
O60.7003 (4)0.8732 (4)0.7109 (6)0.0745 (19)
N30.5663 (4)0.6711 (4)0.7246 (6)0.0492 (17)
N40.5871 (4)0.7542 (4)0.7391 (6)0.0552 (19)
C160.6078 (4)0.5270 (5)0.7135 (7)0.0428 (18)
C170.5299 (5)0.4972 (5)0.6787 (6)0.0430 (19)
C180.5183 (5)0.4121 (5)0.6577 (7)0.052 (2)
C190.5820 (5)0.3546 (5)0.6660 (6)0.048 (2)
H190.57400.29740.64930.057*
C200.6582 (5)0.3831 (5)0.6994 (6)0.047 (2)
C210.6718 (5)0.4676 (5)0.7198 (7)0.053 (2)
H210.72480.48560.73810.064*
C220.6248 (5)0.6155 (5)0.7341 (6)0.047 (2)
H220.67770.63250.75410.057*
C230.5297 (5)0.8171 (5)0.7244 (6)0.0452 (19)
C240.5589 (5)0.9062 (5)0.7306 (6)0.0455 (19)
C250.6422 (5)0.9340 (5)0.7234 (7)0.053 (2)
C260.6607 (7)1.0209 (6)0.7251 (8)0.074 (3)
H260.71541.03910.71710.089*
C270.6000 (9)1.0786 (6)0.7381 (7)0.085 (4)
H270.61371.13620.74310.102*
C280.5176 (8)1.0543 (7)0.7445 (7)0.083 (3)
H280.47581.09500.75180.100*
C290.4986 (6)0.9687 (6)0.7397 (6)0.061 (2)
H290.44300.95220.74280.073*
C300.7849 (5)0.8953 (7)0.6937 (8)0.080 (3)
H30A0.80550.92760.74990.119*
H30B0.78900.92920.63360.119*
H30C0.81730.84410.68600.119*
I10.81885 (3)0.63308 (4)0.55553 (6)0.0747 (2)
I20.46921 (4)0.71070 (4)0.43332 (6)0.0793 (2)
O10.7606 (3)0.4525 (4)0.4793 (5)0.0549 (16)
H10.74250.40410.48900.082*
O20.7669 (3)0.2033 (4)0.4301 (7)0.076 (2)
O30.5224 (3)0.1360 (3)0.4748 (5)0.0639 (16)
N10.6578 (4)0.3339 (4)0.4300 (5)0.0465 (16)
N20.6348 (4)0.2499 (4)0.4275 (6)0.0540 (17)
C10.6177 (4)0.4794 (5)0.4342 (6)0.0407 (18)
C20.6962 (5)0.5073 (5)0.4661 (6)0.046 (2)
C30.7075 (4)0.5914 (5)0.4888 (6)0.048 (2)
C40.6443 (5)0.6517 (5)0.4757 (6)0.052 (2)
H4A0.65370.70940.48830.063*
C50.5680 (5)0.6235 (5)0.4438 (7)0.053 (2)
C60.5548 (5)0.5392 (5)0.4207 (6)0.0451 (19)
H60.50350.52190.39580.054*
C70.6016 (5)0.3892 (5)0.4185 (7)0.048 (2)
H70.54860.37170.39960.057*
C80.6933 (5)0.1877 (5)0.4350 (7)0.0462 (19)
C90.6631 (5)0.0984 (5)0.4467 (6)0.044 (2)
C100.5797 (5)0.0735 (5)0.4667 (6)0.047 (2)
C110.5616 (6)0.0131 (6)0.4790 (7)0.063 (2)
H110.50750.03000.49380.075*
C120.6220 (8)0.0729 (6)0.4696 (8)0.077 (3)
H120.60840.13040.47660.093*
C130.7045 (7)0.0501 (6)0.4495 (7)0.074 (3)
H130.74600.09130.44370.089*
C140.7219 (6)0.0346 (5)0.4387 (6)0.052 (2)
H140.77660.05030.42520.062*
C150.4365 (5)0.1115 (6)0.4888 (7)0.066 (3)
H15A0.42930.08800.55500.099*
H15B0.42150.06940.43940.099*
H15C0.40150.16090.48130.099*
H20.5807 (15)0.237 (5)0.435 (7)0.080*
H4B0.639 (2)0.770 (5)0.754 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I30.0459 (3)0.0612 (4)0.1295 (6)0.0160 (3)0.0114 (4)0.0033 (4)
I40.0618 (4)0.0584 (4)0.1029 (5)0.0198 (3)0.0071 (4)0.0048 (4)
O40.034 (3)0.054 (3)0.089 (5)0.002 (3)0.003 (3)0.001 (3)
O50.056 (4)0.053 (4)0.112 (5)0.002 (3)0.003 (4)0.002 (4)
O60.048 (4)0.067 (4)0.108 (6)0.011 (3)0.003 (4)0.010 (4)
N30.041 (4)0.044 (4)0.063 (5)0.004 (3)0.002 (4)0.006 (4)
N40.045 (4)0.038 (4)0.083 (6)0.001 (3)0.012 (4)0.012 (4)
C160.029 (4)0.043 (4)0.056 (5)0.008 (3)0.007 (4)0.006 (4)
C170.045 (5)0.042 (4)0.042 (5)0.003 (4)0.009 (4)0.003 (4)
C180.038 (4)0.056 (5)0.060 (6)0.006 (4)0.001 (4)0.016 (5)
C190.057 (5)0.040 (4)0.047 (5)0.009 (4)0.009 (4)0.008 (4)
C200.046 (4)0.045 (5)0.051 (5)0.009 (4)0.003 (4)0.002 (4)
C210.039 (4)0.056 (5)0.064 (6)0.009 (4)0.013 (4)0.005 (5)
C220.046 (5)0.043 (5)0.053 (6)0.009 (4)0.005 (4)0.009 (4)
C230.042 (5)0.053 (5)0.041 (5)0.006 (4)0.004 (4)0.003 (4)
C240.047 (4)0.050 (5)0.039 (5)0.001 (4)0.007 (4)0.006 (4)
C250.056 (5)0.054 (5)0.048 (5)0.002 (4)0.005 (4)0.006 (4)
C260.093 (7)0.053 (6)0.076 (7)0.026 (6)0.015 (6)0.008 (6)
C270.152 (12)0.038 (5)0.065 (7)0.015 (7)0.019 (7)0.002 (5)
C280.111 (9)0.064 (7)0.075 (8)0.026 (6)0.023 (7)0.003 (5)
C290.079 (6)0.056 (6)0.047 (6)0.003 (5)0.005 (5)0.003 (4)
C300.055 (6)0.115 (8)0.069 (7)0.009 (6)0.000 (5)0.016 (6)
I10.0441 (3)0.0585 (4)0.1215 (6)0.0146 (3)0.0043 (3)0.0101 (4)
I20.0761 (4)0.0635 (4)0.0985 (5)0.0285 (3)0.0265 (4)0.0121 (4)
O10.031 (3)0.045 (3)0.088 (5)0.004 (2)0.002 (3)0.000 (3)
O20.033 (3)0.058 (4)0.137 (6)0.003 (3)0.002 (4)0.004 (4)
O30.045 (3)0.051 (3)0.096 (5)0.003 (3)0.005 (3)0.000 (3)
N10.039 (4)0.042 (4)0.058 (4)0.001 (3)0.001 (3)0.007 (4)
N20.041 (4)0.039 (4)0.082 (5)0.007 (3)0.004 (4)0.003 (4)
C10.039 (4)0.037 (4)0.047 (5)0.002 (3)0.003 (4)0.007 (4)
C20.035 (4)0.050 (5)0.052 (5)0.002 (4)0.007 (4)0.005 (4)
C30.038 (4)0.051 (5)0.053 (5)0.006 (4)0.001 (4)0.005 (4)
C40.059 (6)0.033 (4)0.065 (6)0.001 (4)0.004 (5)0.009 (4)
C50.055 (5)0.048 (5)0.057 (6)0.003 (4)0.004 (4)0.008 (5)
C60.040 (4)0.061 (5)0.035 (5)0.008 (4)0.013 (4)0.004 (4)
C70.035 (4)0.056 (5)0.053 (5)0.012 (4)0.005 (4)0.007 (4)
C80.043 (5)0.037 (4)0.058 (5)0.002 (4)0.007 (4)0.008 (4)
C90.052 (5)0.045 (4)0.034 (5)0.008 (4)0.005 (4)0.000 (4)
C100.062 (5)0.043 (5)0.035 (5)0.013 (4)0.007 (4)0.003 (4)
C110.070 (6)0.053 (6)0.064 (6)0.014 (5)0.014 (5)0.001 (5)
C120.127 (10)0.038 (5)0.068 (7)0.007 (6)0.009 (6)0.002 (5)
C130.112 (9)0.043 (5)0.068 (7)0.002 (6)0.018 (6)0.001 (5)
C140.061 (5)0.043 (5)0.051 (5)0.004 (4)0.001 (5)0.008 (4)
C150.054 (5)0.080 (6)0.065 (6)0.029 (5)0.002 (5)0.002 (5)
Geometric parameters (Å, º) top
I3—C182.090 (8)I1—C32.101 (7)
I4—C202.111 (7)I2—C52.098 (8)
O4—C171.367 (9)O1—C21.355 (8)
O4—H40.8200O1—H10.8200
O5—C231.229 (9)O2—C81.210 (9)
O6—C251.342 (10)O3—C101.348 (10)
O6—C301.421 (10)O3—C151.445 (9)
N3—C221.287 (10)N1—C71.259 (10)
N3—N41.354 (8)N1—N21.364 (8)
N4—C231.362 (10)N2—C81.356 (9)
N4—H4B0.89 (5)N2—H20.90 (3)
C16—C211.389 (10)C1—C61.389 (10)
C16—C171.414 (10)C1—C21.400 (10)
C16—C221.437 (10)C1—C71.448 (10)
C17—C181.371 (11)C2—C31.360 (10)
C18—C191.366 (11)C3—C41.396 (11)
C19—C201.377 (11)C4—C51.370 (11)
C19—H190.9300C4—H4A0.9300
C20—C211.365 (10)C5—C61.369 (10)
C21—H210.9300C6—H60.9300
C22—H220.9300C7—H70.9300
C23—C241.472 (11)C8—C91.485 (11)
C24—C291.382 (12)C9—C141.379 (10)
C24—C251.412 (11)C9—C101.421 (11)
C25—C261.390 (12)C10—C111.393 (11)
C26—C271.339 (15)C11—C121.353 (13)
C26—H260.9300C11—H110.9300
C27—C281.381 (15)C12—C131.399 (14)
C27—H270.9300C12—H120.9300
C28—C291.374 (12)C13—C141.360 (12)
C28—H280.9300C13—H130.9300
C29—H290.9300C14—H140.9300
C30—H30A0.9600C15—H15A0.9600
C30—H30B0.9600C15—H15B0.9600
C30—H30C0.9600C15—H15C0.9600
C17—O4—H4109.4C2—O1—H1109.5
C25—O6—C30120.9 (7)C10—O3—C15118.1 (6)
C22—N3—N4116.9 (7)C7—N1—N2117.7 (7)
N3—N4—C23120.3 (7)C8—N2—N1120.1 (6)
N3—N4—H4B121 (6)C8—N2—H2120 (6)
C23—N4—H4B118 (6)N1—N2—H2118 (6)
C21—C16—C17117.1 (7)C6—C1—C2119.0 (7)
C21—C16—C22119.4 (7)C6—C1—C7120.5 (7)
C17—C16—C22123.3 (7)C2—C1—C7120.5 (7)
O4—C17—C18119.5 (7)O1—C2—C3118.7 (7)
O4—C17—C16120.1 (7)O1—C2—C1122.0 (7)
C18—C17—C16120.4 (7)C3—C2—C1119.2 (7)
C19—C18—C17121.3 (8)C2—C3—C4121.8 (7)
C19—C18—I3118.7 (7)C2—C3—I1120.4 (6)
C17—C18—I3119.6 (6)C4—C3—I1117.6 (6)
C18—C19—C20118.7 (8)C5—C4—C3118.2 (8)
C18—C19—H19120.7C5—C4—H4A120.9
C20—C19—H19120.7C3—C4—H4A120.9
C21—C20—C19121.3 (8)C6—C5—C4121.2 (8)
C21—C20—I4119.9 (6)C6—C5—I2119.5 (6)
C19—C20—I4118.8 (6)C4—C5—I2119.3 (6)
C20—C21—C16121.0 (8)C5—C6—C1120.4 (7)
C20—C21—H21119.5C5—C6—H6119.8
C16—C21—H21119.5C1—C6—H6119.8
N3—C22—C16119.5 (7)N1—C7—C1121.5 (8)
N3—C22—H22120.3N1—C7—H7119.2
C16—C22—H22120.3C1—C7—H7119.2
O5—C23—N4120.1 (7)O2—C8—N2121.9 (7)
O5—C23—C24122.6 (7)O2—C8—C9121.0 (7)
N4—C23—C24117.3 (7)N2—C8—C9117.1 (7)
C29—C24—C25117.0 (8)C14—C9—C10117.6 (8)
C29—C24—C23116.7 (7)C14—C9—C8116.6 (7)
C25—C24—C23126.2 (7)C10—C9—C8125.9 (7)
O6—C25—C26123.0 (8)O3—C10—C11123.5 (8)
O6—C25—C24116.7 (7)O3—C10—C9117.4 (7)
C26—C25—C24120.2 (9)C11—C10—C9119.0 (8)
C27—C26—C25120.3 (10)C12—C11—C10120.7 (9)
C27—C26—H26119.9C12—C11—H11119.7
C25—C26—H26119.9C10—C11—H11119.7
C26—C27—C28121.5 (9)C11—C12—C13121.5 (9)
C26—C27—H27119.3C11—C12—H12119.3
C28—C27—H27119.3C13—C12—H12119.3
C29—C28—C27118.6 (10)C14—C13—C12117.5 (10)
C29—C28—H28120.7C14—C13—H13121.2
C27—C28—H28120.7C12—C13—H13121.2
C28—C29—C24122.4 (9)C13—C14—C9123.7 (9)
C28—C29—H29118.8C13—C14—H14118.1
C24—C29—H29118.8C9—C14—H14118.1
O6—C30—H30A109.5O3—C15—H15A109.5
O6—C30—H30B109.5O3—C15—H15B109.5
H30A—C30—H30B109.5H15A—C15—H15B109.5
O6—C30—H30C109.5O3—C15—H15C109.5
H30A—C30—H30C109.5H15A—C15—H15C109.5
H30B—C30—H30C109.5H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.902.577 (8)139
O1—H1···N10.821.922.568 (8)136
N2—H2···O30.90 (3)1.91 (6)2.613 (8)134 (8)
N4—H4B···O60.89 (5)1.98 (7)2.629 (9)128 (7)

Experimental details

Crystal data
Chemical formulaC15H12I2N2O3
Mr522.07
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)16.073 (2), 15.628 (2), 13.284 (1)
V3)3336.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.78
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.432, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
26178, 7237, 4902
Rint0.053
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.101, 1.00
No. of reflections7237
No. of parameters407
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.56
Absolute structureFlack (1983), 3436 Friedel pairs
Absolute structure parameter0.59 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N30.821.902.577 (8)139.4
O1—H1···N10.821.922.568 (8)135.6
N2—H2···O30.90 (3)1.91 (6)2.613 (8)134 (8)
N4—H4B···O60.89 (5)1.98 (7)2.629 (9)128 (7)
 

Acknowledgements

We acknowledge Changsha University of Science and Technology for research grants.

References

First citationAli, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087–o4088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLing, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, o948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds