organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iodo-8β,9α,14α-estra-1,3,5(10)-trien-17-one

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 April 2009; accepted 20 April 2009; online 7 May 2009)

In the title compound, C18H21IO, the cyclo­hexane ring adopts a chair conformation, whereas the cyclo­pentane ring and the ten-membered tetra­line portions each adopt an envelope conformation. For the five-membered ring, the methine C atom deviates by 0.638 (4) Å (r.m.s. of the four other atoms is 0.005 Å) and for the ten-membered ring, the methine C atom constituting the flap deviates by 0.671 (3) Å (r.m.s. of the other nine atoms is 0.066 Å).

Related literature

There are only a few crystal structure reports of similar compounds; for the methoxyl-substituted derivative, see: Herrmann et al. (2006[Herrmann, P., Kotora, M., Buděšínský, M., Šaman, D. & Císařová, I. (2006). Org. Lett. 8, 1315-1318.]). For the synthesis of the 3-amino-substituted reagent, see: Conrow & Bernstein (1968[Conrow, R. B. & Bernstein, S. (1968). Steroids, 11, 151-164.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21IO

  • Mr = 380.25

  • Orthorhombic, P 21 21 21

  • a = 9.9636 (2) Å

  • b = 10.5246 (2) Å

  • c = 14.3535 (2) Å

  • V = 1505.15 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.636, Tmax = 0.746 (expected range = 0.690–0.809)

  • 10547 measured reflections

  • 3452 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.03

  • 3452 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1473 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are only few crystal structure reports of similar compounds; for the methoxyl-substituted derivative, see: Herrmann et al. (2006). For the synthesis of the 3-amino-substituted reagent, see: Conrow & Bernstein (1968).

Experimental top

The reactant, 3-amino-estra-1,3,5(1)-trien-17-one, was synthesized by using a literature procedure (Conrow & Bernstein, 1968). The compound (390 mg) was dissolved in hydrobromic acid (54% w/v). Concentrated sulfuric acid (2 ml) and water (4 ml) were added. The solution was cooled in an ice-bath. Sodium nitrite (147 mg) in water (2 ml) was added followed by the addition of excess potassium iodide (1.02 g) dissolved in water (4 ml).

The solution was filtered and the gummy product collected and dissolved in ether–ethyl acetate. The solvent was removed and the crude product (537 mg) chromatographed on a silica-gel (40 g) column. The compound was eluted by chloroform–ethyl acetate (3:1 v/v). The second fraction (465 mg) was a tan glassy material. This was recrystallized from chloroform, methanol and ethyl acetate to give single crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–1.00 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C18H21IO at the 70% probability level. H atoms are drawn as spheres of arbitrary radius.
3-Iodo-8β,9α,14α-estra-1,3,5(10)-trien-17-one top
Crystal data top
C18H21IOF(000) = 760
Mr = 380.25Dx = 1.678 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6954 reflections
a = 9.9636 (2) Åθ = 2.4–28.3°
b = 10.5246 (2) ŵ = 2.12 mm1
c = 14.3535 (2) ÅT = 100 K
V = 1505.15 (5) Å3Irregular block, colorless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.636, Tmax = 0.746k = 1313
10547 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0262P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3452 reflectionsΔρmax = 0.47 e Å3
181 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 1473 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C18H21IOV = 1505.15 (5) Å3
Mr = 380.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9636 (2) ŵ = 2.12 mm1
b = 10.5246 (2) ÅT = 100 K
c = 14.3535 (2) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
3452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3353 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.746Rint = 0.021
10547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.47 e Å3
S = 1.03Δρmin = 0.39 e Å3
3452 reflectionsAbsolute structure: Flack (1983), 1473 Friedel pairs
181 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.398911 (14)1.187407 (14)0.171916 (11)0.01746 (5)
O10.05863 (18)0.21965 (16)0.45415 (13)0.0230 (4)
C10.0408 (2)0.3314 (2)0.46921 (16)0.0164 (5)
C20.0646 (3)0.3860 (2)0.53518 (19)0.0192 (6)
H2A0.04920.35570.59960.023*
H2B0.15580.36040.51550.023*
C30.0483 (3)0.5320 (2)0.52963 (18)0.0185 (5)
H3A0.13620.57550.53330.022*
H3B0.01080.56410.57980.022*
C40.0166 (2)0.5494 (2)0.43324 (16)0.0133 (5)
H40.05480.53000.38640.016*
C50.0771 (2)0.6760 (2)0.40501 (15)0.0117 (4)
H50.15660.69300.44560.014*
C60.0183 (2)0.7883 (2)0.41237 (16)0.0146 (5)
H6A0.06060.78910.47480.018*
H6B0.09030.77990.36520.018*
C70.0573 (2)0.9119 (2)0.39693 (17)0.0143 (5)
H7A0.10710.93380.45440.017*
H7B0.00810.98080.38480.017*
C80.1562 (2)0.9044 (2)0.31532 (16)0.0126 (5)
C90.2161 (2)1.0179 (2)0.28663 (17)0.0139 (5)
H90.19501.09520.31750.017*
C100.3063 (2)1.0176 (2)0.21308 (17)0.0144 (5)
C110.3359 (2)0.9057 (2)0.16548 (19)0.0169 (5)
H110.39580.90610.11400.020*
C120.2762 (2)0.7942 (2)0.19494 (15)0.0168 (5)
H120.29620.71760.16280.020*
C130.1868 (2)0.7901 (2)0.27081 (16)0.0129 (5)
C140.1260 (2)0.6646 (2)0.30264 (15)0.0128 (5)
H140.04430.65030.26360.015*
C150.2184 (3)0.5497 (2)0.28692 (18)0.0176 (5)
H15A0.23410.53990.21920.021*
H15B0.30610.56700.31670.021*
C160.1628 (2)0.4241 (2)0.32552 (19)0.0162 (5)
H16A0.08490.39670.28760.019*
H16B0.23260.35740.32150.019*
C170.1194 (2)0.4408 (2)0.42701 (15)0.0133 (5)
C180.2423 (2)0.4595 (2)0.49110 (18)0.0191 (5)
H18A0.29910.52740.46610.029*
H18B0.29390.38040.49410.029*
H18C0.21190.48270.55380.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01720 (7)0.01525 (7)0.01993 (8)0.00127 (6)0.00318 (6)0.00288 (7)
O10.0296 (10)0.0126 (9)0.0269 (10)0.0016 (7)0.0042 (8)0.0013 (7)
C10.0185 (11)0.0152 (12)0.0155 (11)0.0005 (10)0.0024 (9)0.0012 (10)
C20.0233 (13)0.0143 (12)0.0199 (13)0.0021 (10)0.0064 (10)0.0013 (10)
C30.0237 (12)0.0134 (12)0.0185 (12)0.0014 (9)0.0064 (10)0.0010 (10)
C40.0161 (11)0.0123 (11)0.0115 (11)0.0015 (9)0.0001 (9)0.0008 (9)
C50.0114 (10)0.0119 (10)0.0118 (10)0.0016 (9)0.0003 (8)0.0013 (9)
C60.0148 (11)0.0152 (12)0.0138 (11)0.0014 (9)0.0031 (9)0.0015 (9)
C70.0186 (12)0.0119 (11)0.0124 (11)0.0014 (9)0.0029 (9)0.0016 (9)
C80.0114 (9)0.0138 (11)0.0125 (12)0.0017 (8)0.0034 (9)0.0005 (10)
C90.0148 (12)0.0131 (11)0.0137 (11)0.0008 (9)0.0031 (9)0.0006 (9)
C100.0124 (10)0.0152 (11)0.0158 (11)0.0009 (9)0.0013 (9)0.0014 (9)
C110.0182 (11)0.0187 (11)0.0137 (11)0.0004 (9)0.0030 (10)0.0012 (11)
C120.0221 (12)0.0153 (12)0.0131 (11)0.0011 (9)0.0023 (9)0.0023 (9)
C130.0126 (10)0.0126 (12)0.0135 (11)0.0009 (9)0.0020 (8)0.0016 (9)
C140.0141 (11)0.0125 (11)0.0116 (11)0.0012 (8)0.0010 (8)0.0008 (8)
C150.0232 (13)0.0132 (12)0.0165 (12)0.0008 (10)0.0080 (10)0.0022 (10)
C160.0210 (11)0.0095 (10)0.0181 (11)0.0012 (9)0.0067 (11)0.0038 (12)
C170.0161 (12)0.0115 (10)0.0124 (11)0.0023 (10)0.0002 (9)0.0016 (9)
C180.0185 (11)0.0137 (11)0.0250 (13)0.0014 (9)0.0075 (10)0.0028 (11)
Geometric parameters (Å, º) top
I1—C102.097 (2)C8—C91.397 (3)
O1—C11.209 (3)C8—C131.396 (3)
C1—C21.526 (3)C9—C101.386 (3)
C1—C171.518 (3)C9—H90.9500
C2—C31.547 (3)C10—C111.393 (3)
C2—H2A0.9900C11—C121.382 (3)
C2—H2B0.9900C11—H110.9500
C3—C41.538 (3)C12—C131.407 (3)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.524 (3)
C4—C51.517 (3)C14—C151.537 (3)
C4—C171.539 (3)C14—H141.0000
C4—H41.0000C15—C161.537 (3)
C5—C61.520 (3)C15—H15A0.9900
C5—C141.553 (3)C15—H15B0.9900
C5—H51.0000C16—C171.529 (3)
C6—C71.520 (3)C16—H16A0.9900
C6—H6A0.9900C16—H16B0.9900
C6—H6B0.9900C17—C181.544 (3)
C7—C81.533 (3)C18—H18A0.9800
C7—H7A0.9900C18—H18B0.9800
C7—H7B0.9900C18—H18C0.9800
O1—C1—C2125.3 (2)C8—C9—H9120.0
O1—C1—C17126.2 (2)C9—C10—C11120.9 (2)
C2—C1—C17108.5 (2)C9—C10—I1119.85 (18)
C1—C2—C3105.6 (2)C11—C10—I1119.26 (18)
C1—C2—H2A110.6C12—C11—C10118.4 (2)
C3—C2—H2A110.6C12—C11—H11120.8
C1—C2—H2B110.6C10—C11—H11120.8
C3—C2—H2B110.6C11—C12—C13122.3 (2)
H2A—C2—H2B108.7C11—C12—H12118.8
C4—C3—C2102.1 (2)C13—C12—H12118.8
C4—C3—H3A111.4C8—C13—C12117.8 (2)
C2—C3—H3A111.4C8—C13—C14121.5 (2)
C4—C3—H3B111.4C12—C13—C14120.7 (2)
C2—C3—H3B111.4C13—C14—C15113.55 (18)
H3A—C3—H3B109.2C13—C14—C5109.98 (19)
C5—C4—C3120.79 (19)C15—C14—C5112.83 (19)
C5—C4—C17111.87 (18)C13—C14—H14106.7
C3—C4—C17104.08 (19)C15—C14—H14106.7
C5—C4—H4106.4C5—C14—H14106.7
C3—C4—H4106.4C16—C15—C14114.06 (19)
C17—C4—H4106.4C16—C15—H15A108.7
C4—C5—C6114.57 (18)C14—C15—H15A108.7
C4—C5—C14108.02 (18)C16—C15—H15B108.7
C6—C5—C14108.79 (18)C14—C15—H15B108.7
C4—C5—H5108.4H15A—C15—H15B107.6
C6—C5—H5108.4C17—C16—C15110.27 (19)
C14—C5—H5108.4C17—C16—H16A109.6
C5—C6—C7110.23 (18)C15—C16—H16A109.6
C5—C6—H6A109.6C17—C16—H16B109.6
C7—C6—H6A109.6C15—C16—H16B109.6
C5—C6—H6B109.6H16A—C16—H16B108.1
C7—C6—H6B109.6C1—C17—C16116.02 (19)
H6A—C6—H6B108.1C1—C17—C4101.32 (18)
C6—C7—C8112.71 (19)C16—C17—C4109.19 (19)
C6—C7—H7A109.1C1—C17—C18105.57 (19)
C8—C7—H7A109.1C16—C17—C18111.01 (19)
C6—C7—H7B109.1C4—C17—C18113.48 (19)
C8—C7—H7B109.1C17—C18—H18A109.5
H7A—C7—H7B107.8C17—C18—H18B109.5
C9—C8—C13120.6 (2)H18A—C18—H18B109.5
C9—C8—C7117.1 (2)C17—C18—H18C109.5
C13—C8—C7122.3 (2)H18A—C18—H18C109.5
C10—C9—C8119.9 (2)H18B—C18—H18C109.5
C10—C9—H9120.0
O1—C1—C2—C3179.5 (2)C8—C13—C14—C15148.7 (2)
C17—C1—C2—C31.1 (3)C12—C13—C14—C1531.4 (3)
C1—C2—C3—C424.3 (3)C8—C13—C14—C521.2 (3)
C2—C3—C4—C5167.6 (2)C12—C13—C14—C5158.9 (2)
C2—C3—C4—C1741.0 (2)C4—C5—C14—C13179.61 (18)
C3—C4—C5—C655.3 (3)C6—C5—C14—C1354.7 (2)
C17—C4—C5—C6178.27 (19)C4—C5—C14—C1552.5 (2)
C3—C4—C5—C14176.7 (2)C6—C5—C14—C15177.42 (19)
C17—C4—C5—C1460.3 (2)C13—C14—C15—C16175.6 (2)
C4—C5—C6—C7171.42 (19)C5—C14—C15—C1649.6 (3)
C14—C5—C6—C767.6 (2)C14—C15—C16—C1750.9 (3)
C5—C6—C7—C843.4 (3)O1—C1—C17—C1636.6 (3)
C6—C7—C8—C9170.8 (2)C2—C1—C17—C16144.0 (2)
C6—C7—C8—C139.4 (3)O1—C1—C17—C4154.7 (2)
C13—C8—C9—C100.3 (3)C2—C1—C17—C425.9 (2)
C7—C8—C9—C10179.9 (2)O1—C1—C17—C1886.8 (3)
C8—C9—C10—C111.6 (4)C2—C1—C17—C1892.6 (2)
C8—C9—C10—I1178.76 (17)C15—C16—C17—C1169.9 (2)
C9—C10—C11—C121.8 (4)C15—C16—C17—C456.3 (2)
I1—C10—C11—C12178.55 (18)C15—C16—C17—C1869.6 (2)
C10—C11—C12—C130.2 (4)C5—C4—C17—C1173.37 (18)
C9—C8—C13—C121.9 (3)C3—C4—C17—C141.4 (2)
C7—C8—C13—C12178.3 (2)C5—C4—C17—C1663.7 (2)
C9—C8—C13—C14178.2 (2)C3—C4—C17—C16164.26 (19)
C7—C8—C13—C141.6 (3)C5—C4—C17—C1860.7 (3)
C11—C12—C13—C81.7 (4)C3—C4—C17—C1871.3 (2)
C11—C12—C13—C14178.4 (2)

Experimental details

Crystal data
Chemical formulaC18H21IO
Mr380.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.9636 (2), 10.5246 (2), 14.3535 (2)
V3)1505.15 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.636, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10547, 3452, 3353
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.03
No. of reflections3452
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.39
Absolute structureFlack (1983), 1473 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConrow, R. B. & Bernstein, S. (1968). Steroids, 11, 151–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrmann, P., Kotora, M., Buděšínský, M., Šaman, D. & Císařová, I. (2006). Org. Lett. 8, 1315–1318.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds